
verview of the TRS-80
I I/III Compiler Basic Ma ual

The four sections in this manual contain the information you
need to use Radio Shack's COMPILER BASIC. We suggest that
you begin by running through the steps in the first chapter of
Section 1 , "Operating Compiler BAs1c:'

The four sections are:

1 / perating Compiler BASIC

Catalog Number 26-2204

Takes you through the steps of operating Compiler BASIC from.
starting up the system to typing, debugging, compiling,
running, and saving programs. Includes alphabetical entries
on each BASIC command.

ramming in RSBASIC

Shows you how to write programs using the RSBASIC

programming language. Includes alphabetical entries on each
BASIC keyword.

Explains how to use BEDIT to edit your BASIC source programs.

4/Programmer's Information Section

Gives background information on the Compiler BASIC

development system, memory usage, data storage, and
assembly language subprograms. Also, gives information
on how to use the stand-alone Runtime System.

This manual complements the information in your Model VIII
Operations and TRsoos manuals. If you need more
information on your Model VIII computer system, we refer
you to these manuals.

TRS-80 MODEL I/III COMPILER BASIC
© ® 1981 by Ryan-McFarland Corporation
Licensed to Tandy Corporation, Fort Worth, Texas 76102.
All rights reserved.

TRS-80 MODEL I/III DISK OPERATING SYSTEM (TRSDOS)
© ® 1981 by Tandy Corporation. All rights reserved.

TRS-80 COMPILER BASIC MANUAL
© 1981 by Tandy Corporation. All rights reserved.
Reproduction or use, without express permission, of editorial or pictorial content, in
any manner, is prohibited. While every precaution has been taken in the
preparation of this book, the publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use of
the information contained herein.

IMPORTANT NOTE FOR
MODEL 1/111 COMPILER BASIC USERS

(Catalog Number 26-2204)

It is important to note that when using Compiler BASIC with a Model I or a

Model 111, the minimum system requirements are:

• Two Disk Drives

• A 48K system.

When starting up the Model I system, the Run-Time Diskette (the Compiler
BASIC system diskette) must be in Drive 0. The Program Diskette must be in
Drive 1. When using Model 111, the Program Diskette must be in Drive 0.

Also note that Model I will not prompt you for the date·and time as Model
111 will.

Thank-You!

DIVISION OF TANDY CORPORATION

8759129-781

Her orks
The BASIC programming language must translate all your
BASIC instructions to an object code the computer
understands. The means it uses to translate your instructions
depends on the form of BASIC you have.

The BASIC which comes with the TRS-80 Model I/III is an
Interpreter. It interprets each instruction to object code
everytime it runs the program.

Compiler BASIC, on the other hand, translates the program
in two stages. First, it compiles the entire program to an
intermediate object code. Then, when running the program,
it translates this intermediate code to an object code.

Compiling your program to this intermediate code will give
you several advantages:

The program will take up much less space in memory and
on diskette.

No one using your program will be able to read your
"source" BASIC instructions.

tice ra ers
By your purchase of the software product described in this
book, you have obtained a license to duplicate TRsoos and
Model I/III BASIC only as necessary for personal use on your
Model I/III Micro-Computer.

If you intend to sell BASIC applications programs you have
written for the TRs-so Model I/III, you must follow the
procedure below to avoid violation Qf this license and of the
copyright laws.

The complete Radio Shack BASIC Development System
(26-2204) includes the TRsoos@ operating system, the
RSBASIC Compiler, the RUNBASIC runtime and numerous
auxiliary files.

RSBASIC produces an intermediate code which can only be
executed by the runtime system RUNBASIC. Therefore, your
compiled program will require that the user have TRsoos and
RUNBAs1c from Radio Shack.

Since you may not duplicate TRsoos or RUNBASIC for resale,
you have two options for selling a copy of your own program:

A. Purchase a RUNBASIC/TRsoos runtime system diskette
(Catalog Number 26-2208 for Model I, Catalog Number
26-2209 for Model III) from Radio Shack. Copy your compiled
program onto this diskette, and sell this diskette to your
customer. The copyright notices affixed to that diskette must
not be removed or hidden from view. For each copy of your
program you sell in this manner, you must purchase the
RUNBASIC diskette and copy your program onto it.

B. Sell your compiled program without TRsoos and
without the BASIC runtime. Instruct your customer to purchase
a RUNBASIC/TRsoos runtime from Radio Shack.

The Model I/III BASIC Interpreter programs are not meant
to be run under Compiler BASIC. Radio Shack does not
recommend converting BASIC Interpreter programs.

nt Note to
el IH sers

From time to time, Radio Shack may release new versions of TRSDOS, the
TRS-80 disk operating system. Check with your local Radio Shack or the
TRS-80 Microcomputer News for notices and instructions on these
enhanced versions of TRSDOS.

If you receive a new version of TRSDOS, read the following before making
any modifications to your existing software packages (applications, lan
guages, or system utilities):

• Do not convert your Radio Shack software packages for use with the new
version of TRSDOS unless you are instructed to do so.

• Before converting a Radio Shack supplied Model I software package to a
Model 111 format, check to see if Radio Shack provides a Model 111 version
of the package. If so, you should obtain a copy of that version.

• If you're using several different software packages, press the RESET but
ton whenever you change software.

Thank-You!

I
·~ A Division of Tandy Corporation

8759106

*
* *
* ALL USERS MODELS I/III *
* IMPORTANT NOTICE PLEASE READ FIRST*
* *
*

===- ==========-
Make sure you read the indicated pages for the stock number
of the package that you are going to use.
=======:===========================---=========-. ---·----=----

STOCK ADDENDUM PAGES TO READ
NUMBER
-----·-- --
26-2013 MODEL I version pages 1, 3' 4, 5, 6, and 7

MODEL III version page 2

26-2203 MODEL I version pages 1, 3 , 4, 5, and 6
MODEL III version page 2

26-2204 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26-2206 MODEL I pages 1, 3, 4, 5, and 6

26-2207 MODEL III page 2

26-2208 MODEL I pages 1, 3, 4 , 5, and 6

26-2209 MODEL III page 2

----·--- --

*
* *
* MODEL I USERS *
* IMPORTANT NOTICE PLEASE READ FIRST*
* *
*

UPGRADE UTILITY ON TRSDOS 2.3B

The MODEL I diskette in this package contains a NEW version
of TRSDOS which is not compatible with OLD versions of
TRSDOS, see below for further details. TRSDOS 2.3B is
specially designed for use only with the below listed
packages: 1) 26-2013 SERIES I EDITOR/ASSEMBLER

2) 26-2204 BASIC Compiler, 26-2208 BASIC Runtime
3) 26-2203 COBOL Compiler, 26-2206 COBOL Runtime

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
UPGRADEd before use. Once UPGRADEd, a system or data
diskette becomes a NEW TRSDOS data diskette.

OLD diskettes used under NEW TRSDOS without UPGRADEing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes usel under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you determine that you need to use the UPGRADE utility
see page titled "TIPS ON USING THE MODEL I 'rRSDOS 2. 3B
UPGRADE UTILITY" contained in this addendum.

NOTE: When changing from one TRSDOS to the other you must
use the RESET switch each time the diskette in drive 0
is changed.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE UPGRADED.

OLD:
NEW:
file:

program:

data:

system diskette:

dat:i diskette:

UPGRADE:

TRSDOS 2.1, 2.2, and 2.3.
TRSDOS 2.3B.
A collection of information stored as one
named unit in the directory.
A file which causes the computer to
perform a function.
Information contained in a file which is
used by a program.
A diskette containing TRSDOS. When this
diskette is placed in drive O and the
RESET switch is pressed, TRSDOS will begin
to run.
A diskette which does not contain TRSDOS.
If this diskette is placed in drive O and
the RESET switch is pressed, the screen
will clear and "NO SYS'rEM 11 will be
displayed.
A program contained on the TRSDOS 2.3B
diskette.

- l of 7 -

*
* *
* MODEL III USERS *
* IMPORTANT NOTICE PLEASE READ FIRST*
* *
*

XFERSYS UTILITY ON TRSDOS 1.3

The MODEL III diskette in this package contains a NEW
version of TRSDOS which is not compatible with OLD versions
of TRSDOS, see below for further details.
============--=---==---------------------------------=-------

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
XFERSYSed before use. Once XFERSYSed, an OLD TRSDOS diskette
becomes a NEW TRSDOS diskette and should not be used with
OLD TRSDOS again. If you started with an OLD system or data
disk, the XFERSYSed diskette will be a NEW system or data
diskette respectivelyo

OLD diskettes used under NEW TRSDOS without XFERSYSing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indicationo Some programs
will not function properly under these conditions.

NEW diskettes used under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly ..

If you need to use the XFERSYS utility see the TRSDOS
section of your TRS-80 MODEL III Disk System Owner's Manual.

NOTE: When changing from one TRSDOS to the other you MUST
use the RESET switch each time the diskette in drive 0
is changed. You may also XFERSYS onto a NEW data disk.
If this is done, all system files of the system disk
will be moved onto the data disk.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE XFERSYSD.

OLD:
NEW:
file:

program:

data:

system diskette:

data diskette:

XFERSYS:

TRSDOS 1.1 and 1.2.
TRSDOS 1 .. 3 ..
A collection of information stored as one
named unit in the directory ..
A file which causes the computer to
perform a function.
Information contained in a file which is
used by a program.
A diskette containing TRSDOS. When this
diskette is placed in drive O and the
RESET switch is pressed, TRSDOS will begin
to run ..
A diskette which does not contain TRSDOS.
If this diskette is placed in drive O and
the RESET switch is pressed, the screen
will clear and 00 Not a SYSTEM Disk" will be
displayed.
A program contained on the TRSDOS 1.3
diskette.

- 2 OF 7 -

*
* *

*
*

OWNERS OF THE MODEL I, SERIES-I EDITOR *
ASSEMBLER, BASIC Compiler, BASIC Runtime*

COBOL Compiler, COBOL Runtime *
* *
*

Differences between TRSDOS 2.3B and TRSDOS 2.3 are:

1. Variable length records have been corrected, in all
aspects ..

2. In most cases, your computer 'Will not 10 hang upn when you
attempt use of a device which is not connected and
powered up ..

3., The DEVICE command has been deleted.

4., The following commands have been added:

CLS
This command clears the display and puts it in the 64-
character mode.

PATCH 'filespec' (ADD= aaaa,FIND = bb,CHG = cc)
This command lets you make a change to a program file.,
You need to specify~

'aaaa' - a four byte hexadecimal address specifying
the memory location the data you want to
change

wbb 9
- the contents of the byte you want to find
and change~ You can specify the contents of
more than one byte.

'cc' - the new contents to replace 'bb'

For example:
PATCH DUMMY/CMD (ADD=4567 ,FINO=:·=CD3300 ,CHG=CD3B00)

changes CD3300, which resides at memory location 4567
(HEX) in the file named DUMMY/etvm, to CD3B00"

If this command gives you a STRING NOT FOUND error
message, this means that either 'bb' does not exist, or
else 'bb' crosses a sector boundary• If 'bb' crosses a
sector boundary, you must patch your file one byte at
a timeo For example~

PATCH DUMJvIY/CMD (ADD=4568, FIND=33 ,CHG=3B)
replaces the contents of the second byte in the above
example"

- 3 of 7

TAPE (S=source device,D=destination device)
This command transfers Z-80 machine-language programs
from one device to the other. You must specify the
'source device' and 'destination device' using these
abbreviations:

T - Tape
D - Disk
R - RAM (Memory)

The only valid entries of this command are:
TAPE (S=T,D=D) TAPE (S=T,D=R) TAPE (S=D,D=T)

For example
TAPE (S=D,D=T)

starts a disk-to-tape transfer. TRSDOS will prompt you
for the diskette file specification and ask you to press
<ENTER> when the cassette recorder is ready for
recording.,

CAUTION: When doing a tape-to-RAM transfer, do not use a
loading address below 6000 (Hex), since this would write
over TRSDOS or the tape command

5. These commands have been slightly changed:

BACKUP now checks to see if the diskette which will be
your backup copy is already formatted. If it is, BACKUP
will ask you if you want to REFORMAT it.

CLOCK will no longer increment the date when the time
goes beyond 23:59:59e

COPY now works with only one For example:
COPY :0 to FILE3:0

duplicates the contents of FILEl to a file named FILE3
on the same diskette.

KILL will now allow you to kill a protected file without
knowing its UPDATE or protection level. To kill this
kind of file, type an exclamation mark(!) at the end of
the KILL command. For example:

KILL EXAMPLE!
kills the UPDA'rEd or protected file named EXAMPLE.
(Note the mandatory space between the file name and the
exclamation mark.)

LIST only lists the printable ASCII characters.

PROT no longer allows you to use the UNLOCK parameter.

DIR is now in this format:

Disk Name: TRSDOS
Filename
JOBFILE/BLD
TERMINAL/Vl
LOADX/CMD
*** 171 Free

Attrb
N*XO
N*XO
N*XO

Granules

Drive: 0
LRL #Rec
256 1
256 5
256 5

04/15/81
#Grn #Ext

1 1
2 1
2 1

- 4 of 7 -

EOF
1

126
0

1. Disk name is the name which was assigned to the disk
when it was formatted.

2. File Name is the name and extension which was
assigned to the file when it was created. The password (if
any) is not shown&

3. Attributes is a four-character field:
a. the first character is either I (Invisible file)

or N (Non-invisable file)
b. the second character is S (System file) or*

(User file)
c. the third character is the password protection

status of the file:
X - the file is unprotected (no password)
A - the file has an access word but no

update word
U - the file has an update word but no

access word
B - the file has both update and access

word
d. the fourth character specifies the level of

access assigned to the access word:
0 - total access
1 - kill the file and everything listed

below
2 - rename the file and everything listed

below
3 - this designation is not used
4 - write and everything listed below
5 - read and everything listed below
6 - execute only
7 - no access

4. Number of Free Granules - how many free granules
remain on the diskette.

5. Logical Record Length - the record length which was
assigned to the file when it was created.

6. Number of Records - how many logical records have
been written.

7. Number of Granules - how many granules have been used
in that particular file.

8. Number of Extents - how many segments (contiguous
blocks of up to 32 granules) of disk space are allocated to
the file.

9. End of File (EOF) - shows the last byte number of the
file.

- 5 of 7 -

TIPS ON USING THE MODEL I TRSDOS 2.3B UPGRADE UTILITY

If you determine that you need to use the UPGRADE
utility then proceed as indicated below.

Insert your TRSDOS 2.3B system diskette in drive 0,
press the RESET switch, and when TRSDOS READY is displayed
type UPGRADE <ENTER>. Your screen will display:

TRSDOS DIREC'rORY UPGRADE UTILI'rY

FOR CONVERSION OF TRSDOS 2.1, 2.2, OR 2.3 TO
TRSDOS 2.3B DIRECTORY FORMAT.

ONCE UPGRADE HAS BEEN EXECUTED, YOUR DISKETTE SHOULD
NOT BE USED UNDER TRSDOS 2.1, 2.2, OR 2.3 AGAIN.

DO YOU WISH TO CONTINUE (Y/N/Q)?

This means that the directory format on your TRSDOS
2.1, 2.2, or 2 3 diskette will be converted to the TRSDOS
2.3B format. Once you type Y to continue, the screen will
display:

INSERT DISKETTE TO BE UPGRADED IN DRIVE 1.
PRESS <ENTER> WHEN READY.

Insert the diskette you want to convert in drive 1 and
press <ENTER>. After successful conversion, the screen will
display a CONVERSION COMPLETE message. If you are attempting
to convert a diskette which has already been converted, the
screen will display a DISKETTE IS ALREADY A 2.3B error
message.

TECHNICAL NOrrE

For all files indicated in the directory that have an End Of
File {EOF) not equal to zero, UPGRADE will change the number
of records to be one less than the previous record count.
Note that in FILEl, the number of records indicated has been
changed from 10 to 9 after UPGRADE. For FILE2 the records
indicated remain the same since EOF=0o

BEFORE UPGRADE
TRSDOS 2.1, 2e2, 2.3

FILEl EOF=9 10 RECORDS
FILE2 EOF=0 10 RECORDS

AFrrER UPGRADE
TRSDOS 2 .. 3B

9 RECORDS
10 RECORDS

If the TRSDOS 2.1, 2.2, or 2o3 diskette is a system
diskette, part of the conversion process will prohibit
accidental usage under the TRSDOS 2.1, 2.2, or 2.3 by
killing the files listed below:

SYS0/SYS SYSl/SYS
SYS3/SYS SYS4/SYS
SYS6/SYS FORMAT/CMD
BASICR/CMD BASIC/CMD

SYS2/SYS
SYS5/SYS
BACKUP/CMD

- 6 OF 7 -

SPECIAL NOTE FOR 26=2013 MODEL I SERIES I EDITOR/ASSEMBLER

==========================-=-=------=-=-=--------------=-=-=-

The MODEL I diskette that contains your EDTASM package
includes TRSDOS 2.3B which is not compatible with TRSDOS
2.1, 2o2, or 2.3. Therefore, a machine language object file
created with this package file CAN NOT simply be COPYied
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

See below for instructions on how to move an object file
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

TIPS ON GETTING OBJECT FILES FROM TRSDOS 2.3B
ONTO TRSDOS 2.1, 2.2, OR 2.3 DISKETTES

If for example, you desire to use an assembly language
function written with TRSDOS 2.3B EDTASM as a "user's
external subroutine 11 under the TRSDOS 2 "3 BASIC
interpreter,follow the given steps carefully:

1) Insert your TRSDOS 2.3B system diskette that contains the
EDTASM package in drive O and press the RESET switch.

2) Use the EDTASM package to enter and assemble a routine.
We have used the SHIFT routine given in Section 7 of your
TRSDOS & DISK BASIC Reference Manual as an example ..

a) Save the source program using the command:
W SHIF1r/SRC: 0

b) Then assemble the source file with the command:
A SHIFT/CMD:0

c) Quit EDTASM with the command:
Q

d) At TRSDOS READY enter the command:
LOAD SHIFT/CMD:0

3) Remove your TRSDOS 2"3B diskette"

4) Insert your TRSDOS 2o3 diskette in drive O and press the
RESET switch ..

5) At TRSDOS READY enter the command:
DUMP SHIFT/CMD:0 (START=X'7D00' ,END=X'7D09' ,TRA=X'7D00')

Reference Section 4 of your manual and note that X'7000'
is the lowest address that may be used as the origin of
your programs ..

6) The file on this diskette, named SHIFT/CMD, may now be
used as needed under TRSDOS 2el, 2.2, or 2e3 with the
BASIC interpreter as a user's external subroutine.

875-9119

- 7 of 7

0
C

11111

I

General Information
Compiler Use, Start-Up,
Commands

~TRS-BO

CAT. NO.

26-2204

TM

SOFTWARE
": ' !

CUSTOM MANUFACTURED IN USA BY RADIO SHACK1 A DIVISION OF TANDY CORP.

-------------TRS-BO@ ___________ _

*
*
*
*
*

Chapter 1

USING COMPILER BASIC

*
*
*
*
*

----------lladaolhaeli----------

You may use Compiler BASIC in two ways:

1. As a Development System - to write, compile, run,
debug, and store programs, or

2. As a Stand-Alone Runtime System - to only run your
programs. After developing a program, you might give it to
other people to operate by simply using the Runtime System.

This section explains how to use Compiler BASIC as a Development
System. For information on the stand-alone runtime system, see
the Programmers Information Section. Also see the appendix for
information on how to create a runtime system diskette.

We suggest you begin by going through the steps in Chapter 1.

TABLE OF CONTENTS
SECTION 1. OPERATING COMPILER BASIC

Chapter 1.
Using Compiler BASIC 1-1 to

Takes you through the steps of loading 1-13
and operating Compiler BASIC.

Chapter 2.
Commands ... 2-1 to

Contains alphabetical entries on each 2-36
Compiler BASIC command.

®

MODEL I/III COMPILER BASIC USING COMPILER BASIC

-------------TRs-so@ ____________ _

INTRODUCTION

This chapter quickly runs through the mechahics of loading and
operating the Model I/III BASIC Compiler. We only mention
certain BASIC commands to illustrate how to operate the
Compiler. The details on each command are in the Commands
Chapter. Details on the Compiler itself are in the Programmers
Information Chapter.

OUTLINE OF CHAPTER 1
USING COMPILER BASIC

I. Starting Up Model I/III Compiler BASIC
A. Setting the Date and Time
B. Loading RSBASIC

II. Programming with RSBASIC
A. Typing the Program into Memory
B. Executing the Program

III. Using the Diskettes
A. Assigning File Specifications
B. Storing a Program on Diskette
C. Clearing Memory
D. Loading Programs from Disk
E. Storing Data Files on Diskette

---------1tad1elhaeli---------

PAGE l - 1

MODEL I/III COMPILER BASIC USING COMPILER BASIC
-----------TRs-ao@ _________ _

Inserting a diskette

----------1tad1e/haell----------
PAGE 1 - 2

MODEL I/III COMPILER BASIC USING COMPILER BASIC

----------------TRS-BO@)-----------------
STARTING UP MODEL I/III COMPILER BASIC

Before loading Compiler BASIC, you need to initialize the Model
I/III disk operating system by setting the date and time. The
operating system, called TRSDOS, is on your RSBASIC diskette and
is loaded automatically when you press the reset button.

The Model I/III Operations Manual explains how to connect and
power-up the Model I/III, and how to properly insert a diskette.

SETTING THE DATE AND TIME

As soon as TRSDOS is loaded, it prompts you for the date. Type
in the date using the MM/DD/YY form and press <ENTER>. For
example:

04/01/80 <ENTER>

sets the date for April 1, 1981.

Next, the system prompts you for the time. To skip this
question, simply press <ENTER>. TRSDOS starts the clock at
00:00:00.

If you want to set the time, type it in using the 24-hour
HH:MM:SS form. For example:

14:30:00 <ENTER>

starts the clock at 2:30 PM.

The system returns with this message:

TRSDOS READY

At this point you may execute any TRSDOS command or load
RSBASIC.

LOADING RSBASIC

The simplest way to load RSBASIC is to type:

RSBASIC <ENTER>

---------1tad1elhaell---------
PAGE 1 - 3

MODEL I/III COMPILER BASIC USING COMPILER BASIC

-------------TRS-ao@ ____________ _

After taking a few seconds to load, BASIC displays a start-up
heading like this:

·rRS-80 MODEL I/III COMPILER BASIC (RSBASIC ver 2.4)
(C) 1981 BY RYAN-MCFARLAND CORP. LICENSED TO TANDY CORP.
*

You may now begin programming in BASIC.

Options for Loading RSBASIC

The complete syntax for loading RSBASIC is:

RSBASIC filespec T=nnnn, S=xxxx
'filespec' is a TRSDOS file specification
'nnnn' is a hexadecimal address representing

the top memory address accessible by BASIC
'xxxx' is a hexadecimal address representing the

size of the stack area to be used by BASIC.
'filespec',T='nnnn', and S='xxxx' are optional

This means you have several options you may use in loading
RSBASIC:

1. You may load it with an instruction to immediately load
and execute a BASIC program. To do this type RSBASIC and the
program's file specification. For example:

TRSDOS READY
RSBASIC FILE:l

loads RSBASIC, then loads and executes the program file named
FILE from drive 1.

2. You may load it with an instruction to protect high
memory for your own object code programs. To do this type
RSBASIC followed by T=nnnn {where nnnn is a hexadecimal number
representing the top memory address which BASIC may use). For
example:

----------1tad1elhaeli----------
PAGE 1 - 4

MODEL I/III COMPILER BASIC USING COMPILER BASIC

-------------TRS-so@ ___________ _

TRSDOS READY
RSBASIC (T=BF00)

loads RSBASIC. BF00 (decimal 48896) is the highest address BASIC
will use.

TRSDOS READY
RSBASIC PROG/CMP (T=E000)

Loads RSBASIC and the program PROG/CMP, and immediately executes
PROG/CMP. BASIC will not be able to use any memory addresses
over E000.

3. You may load it with an instruction to set the stack
size to greater than the default stack size of 00CO (decimal
192) to allow increased usage of BASIC features like GOSUB and
CALL, which use more than average amounts of stack space.

TRSDOS READY
RSBASIC (8=0180)

loads RSBASIC with a stack size of 0180 (decimal 386).

TRSDOS READY
RSBASIC (T=E000, 8=0180)

loads RSBASIC with a stack size of 0180 and prevents BASIC from
utilizing any memory address over E000.

------------ II
PAGE 1 - 5

MODEL I/III COMPILER BASIC USING COMPILER BASIC

-------------TRS-eo@ ___________ _

PROGRAMMING WITH RSBASIC

TYPING THE PROGRAM INTO MEMORY

To type a BASIC program line into memory, type a line number
followed by a space followed by a BASIC statement. You must
press <ENTER> to signify the end of the line. This is an
example of how to type a program line:

10 PRINT "'rHIS IS A SAMPLE BASIC PROGRAM LINE" <ENTER>

BASIC has six commands to help you in typing and editing a
program:

1. AUTO - automatically numbers each program line
2. CHANGE - replaces one group of characters on program

lines with another.
3. DELETE - deletes one or more program lines
4. DUPLICATE - duplicates one or more of your program lines

in a different part of your program.
5. RENUMBER - renumbers your program.
6. LIST - lists your program.

To use a BASIC command, type the command and then press <ENTER>.
For example:

LIST <ENTER>

Lists all the program lines you have typed.

Some commands require that you include parameters as part of the
command. For example:

CHANGE 10/LINE/

changes line 10 by deleting the word LINE. The parameters are
10 and LINE.

The Model I/III keyboard has certain special keys which are
helpful in typing program lines and commands:

---------- llad1olhaeli----------

PAGE 1 - 6

MODEL I/III COMPILER BASIC USING COMPILER BASIC

------------TRS-BO@ ___________ _

<-

<ENTER>

<SPACEBAR>

shift<-

Backspaces the cursor, erasirig the
last character you typed. Use this
to correct entry errors.

Signifies end of line.

Enters a space (blank) character and
moves the cursor one character
forward.

Erases the current line. Use this
when you want to correct the entire
line.

You may want to use BEDIT to edit your program. The section on
BEDIT explains how to do this.

EXECUTING THE PROGRAM

The BASIC Compiler only executes programs which have been
compiled into object code. If you are executing a particular
BASIC program for the first time, there will be a slight delay
before that program is executed in order for BASIC to compile
the program.

The BASIC command for executing a program is RUN. To execute
this program:

10 PRINT "THIS IS A SAMPLE BASIC PROGRAM"
20 GOTO 10

Type the RUN command:

RUN <ENTER>

BASIC compiles and then executes the program. While the program
is executing, the Computer is under control of the program.
These are the two special keys you may use to interrupt
execution of the program:

----------1tad10/haell----------

PAGE l - 7

MODEL I/III COMPILER BASIC USING COMPILER BASIC

------------- TRS-so@ ___________ _

shift@ Pauses execution of the program. Press
again to continue.

<BREAK> Terminates execution of the program..
During line input, the program will wait
to terminate execution until you press
the <ENTER> key.

Note: RUN does not initialize variable memory during the
compiling process. If you are Running the same program a number
of times, the program will start each time with the same values
it had in variable memory the last time it was Run.

Debugging the Program

RSBASIC has four commands to help in debugging a program:

1. TRACE - sets up a tracer which displays each line number
as it is being executed.

2. BREAK - sets breakpoints in the program which break
program execution.

3. STEP - executes a certain number of lines in the program.
4. GO - continues program execution at the next executable

statement.

These commands are detailed in the Commands section.

--------- lladaelhaeli---------
PAGE 1 - 8

MODEL I/III COMPILER BASIC USING COMPILER BASIC
-------------TRs-eo@ ___________ _

USING THE DISKETTES

You may use diskettes to store any programs or data files you
have created. To store data on a diskette, the write-protect
notch on the diskette must be uncovered. Cover the notch to
write-protect your valuable diskettes.

Sector Hole

leave Uncovered toallowDi7

Read/Write
Notch

Before using a diskette for storage, make sure the diskette
which you want to use is properly inserted. Never insert or
remove the diskette while reading or writing to it. This might
destroy the contents of the diskette.

---------rladaelhaeli--------
PAGE 1 - 9

MODEL I/III COMPILER BASIC USING COMPILER BASIC
@ _______________ _

ASSIGNING FILE SPECIFICATIONS

Anything you store on diskette must be stored as a disk file
with a TRSDOS file specification. Afterwards, you may load the
program by specifying the file name you gave to the file when
you stored it.

The complete syntax for a file specification is:

filename/ext.password:d
'filename' is any name up to seven characters

beginning with a letter.
'/ext' is an optional extension to the filename

consisting of up to three characters.
'.password' is an optional password with up to

eight characters.
':d' is an optional drive specification (0,1,2, or 3).

You may use this if you have a multi-drive system
to specify which disk drive you want to use in
saving and loading the program.

Only 'filename' is essential. Both '/ext' (extension) and
'.password' are optional extensions which you may add to the
filename. ':d' is also optional. If you have a multi-drive
system, it specifies which drive you are using for storage.

Examples of file specifications:

BOOK/BAS.ABCDE:2

The filename is BOOK, the extension to the filename is BAS, the
password is ABCDE. The diskette in drive number 2 will be used
in saving or loading the program.

PROGRAM

The filename is PROGRAM. There is no extension, password, or
drive specification. Since there is no drive specification,
BASIC will use the first available drive beginning with drive 0
(the built-in drive).

ACCOUNTl/CMP:l

----------1tad10/haell----------

PAGE 1 - 10

MODEL I/III COMPILER BASIC USING COMPILER BASIC

-------------TRS-BO ®------------
•rhe filename is ACCOUNTl. The extension is CMP. The diskette
in drive number 1 will be used in saving or loading the program.

PAYROLL.SECRET

The filename is PAYROLL. The password is SECRET. There is no
extension to the filename and no drive specification.

Note: For more information on TRSDOS file specifications see
your Model I/III Disk Operating System Manual.

STORING A PROGRAM ON DISKETTE

RSBASIC has two commands for storing a program on diskette: SAVE
and COMPILE. The SAVE commands stores the program in its
existing BASIC format. COMPILE compiles the program to object
code and saves it as an object code program.

Saving a Program:

To SAVE a program which is currently in memory, simply type the
SAVE command followed by the file specification you are
assigning to the program. For example, to save this program
(once it has been typed into memory):

10 PRINT "THIS IS AN EXAMPLE OF A BASIC PROGRAM"
20 GOTO 10

You may type:

SAVE EXAMPLE/BAS <ENTER>

This gives the program the file name EXAMPLE, with the extension
BAS, and saves it on the diskette in drive O -- the built in
drive. (If you have a multi-drive system, RSBASIC will save it
on the first diskette available,beginning its search with the
diskette in drive 0).

A Note of Caution

If you save a file with the same file specification as an
existing file, the contents of the existing file will be
destroyed. For instance, if you save another program under the
name EXAMPLE/BAS, the program file you just created above will
be destroyed in order to make room for the new file.

----------1tad1elhaell----------

PAGE 1 - 11

MODEL I/III COMPILER BASIC USING COMPILER BASIC

For this reason, you might want to check the diskette's
directory, before you go into RSBASIC, to see what files are
already on the diskette.

Compiling a Program

Now that the program above is saved as a BASIC program, you may
compile it to an object code disk file. Type:

COMPILE EXAMPLE/BAS, EXAMPLE/CMP <ENTER>

This compiles the program disk file named EXAMPLE/BAS and stores
it on diskette as an object code file with the name EXAMPLE/CMP.
The original source program is left unchanged. You should be
sure to save it in case you ever need to modify the program (see
below).

There are several reasons for compiling a long program:

1. The compiled program takes up less room, both on
diskette and in memory.

2. Once you have a program in final form, so that further
editing and debugging is not required, you don't need all the
overhead of the RSBASIC Development System. Instead, you may
copy the compiled program onto a diskette containing only the
RUNBASIC program. This leaves maximum disk space available for
your data files.

You cannot edit, list or otherwise modify a compiled program.
If you ever need to modify it, you simply edit the original
source program and re-compile it.

CLEARING MEMORY

Once programs are saved on diskette, you will probably want to
clear the Computer's memory .. BASIC has two commands for this:

1. NEW - erases all BASIC programs from memory but keeps
compiled object code programs in memory.

2. CLEAR - erases all BASIC and compiled programs from
memory, undefining all variables.

For example, to erase all programs from memory, type:

CLEAR <ENTER>

------------11

PAGE 1 - 12

MODEL I/III COMPILER BASIC USING COMPILER BASIC

------------TRS-BO@ ___________ _

LOADING PROGRAMS FROM DISK

BASIC has different commands for loading BASIC and Compiled
programs from diskette.

Loading a BASIC Program

The OLD command loads a BASIC program from diskette. For
example:

OLD EXAMPLE/BAS

Loads the program from diskette named EXAMPLE/BAS, which was
stored above with the SAVE command. Once the program is loaded,
you may execute it with the RUN command.

Since memory is cleared everytime you OLD a program, BASIC
offers two commands to use in loading more than one BASIC
program: APPEND and MERGE.

Loading a Compiled Program

The LOAD command loads Compiled programs from diskette. For
example:

LOAD EXAMPLE/CMP <ENTER>

Loads from diskette the program named EXAMPLE/CMP, which was
stored above with the COMPILE command. Once loaded, the program
may be executed with RUN.

Unlike OLD, LOAD does not clear memory when it loads a program.
Therefore, you may load a series of Compiled programs into
memory.

STORING DATA FILES ON DISKETTES

To store data files on diskette, see the chapter on Data Files.

----------ltadaelhaell----------
PAGE 1 - 13

------------TRS-eo@) ___________ _

* *
*
*
*

Chapter 2

COMMANDS

*
*
*

* *

-----------llad1elhaell-----------

MODEL I/III COMPILER BASIC COMMANDS

-------------TRs-so@ ___________ _

INTRODUCTION

Compiler BASIC is made up of commands. These commands instruct
it to do something immediately.

In this chapter, there are alphabetical entries for each
command. The format for each command is explained on the next
two pages. On the following page is a brief introduction to
commands.

OUTLINE FOR CHAPTER 2
COMMANDS

I. Format for the Command Entries

II. Introduction to Commands

III. Alphabetical Entries for each Command

----------llad1elhaeli----------

PAGE 2 - 1

MODEL I/III COMPILER BASIC COMMANDS
-------------TRS-ao@ ______________ _

FORMAT FOR COMMAND ENTRIES

1. The first line is the command itself. The second line
briefly describes what it does.

2. The information in the gray box is the syntax for the
command. The first line shows the format to use in typing the
command. This format line always contains:

a. the command itself

and may also contain:

b. parameters

c. options

If the syntax contains parameters and options, the next lines
define them. A parameter enclosed in single quotes indicates
that you must specify its value. In the syntax illustrated
here, you must specify 'startline' and 'endline', if you choose
to use these parameters.

3. This paragraph explains how to use the command.

4. These examples illustrate how the command might be used.

---------- llafl1elhaeli----------

PAGE 2 - 2

MODEL I/III COMPILER BASIC COMMANDS

-----------TRS-ao@ __________ _

-- COMMAND --

LIST (1)
Display Program Lines

LIST startline~endline string A (PRT)
'startline' is .a line number specifying the lower

limit £or the listing.
'endline' is a line number specifying the upper limit

for the listing. If omitted, only 'startline 1

will be listed. (2)
'string' is a string constant or a string variable.

If A is omitted, only the first statement which
contains 'string'· will be listed. 'string' A may
be omitted.

PRT causes the listing to appear on the line pririter
rather than the video display.

Note: If both 'startline' and 'endline' are omitted,
the entire progiam will be listed.

The LIST command gets the Computer to display a program line or
a group of program lines that are currently in memory. If you
do not specify any line numbers with the LIST command, it will
list all the lines. You can use the PRT option to cause the
listing to be printed on the line printer, but if the 'string'
option is used, the 'A' option must also be used.

You may specify a certain string you would like listed by
putting it between any two non-numeric delimiting characters
except" - "or" "

Examples

LIST

(3)

(4)
Displays the entire program. To stop the automatic scrolling,
press <shift@>. This will freeze the display. Press <shift@>
again to continue the listing.

LIST 50

--------- llad1e /haell---------

PAGE 2 - 3

MODEL I/III COMPILER BASIC COMMANDS

--------------TRS-ao@ ___________ _

INTRODUCTION TO COMMANDS

A command instructs the Computer to immediately do something.
For example:

*LIST <ENTER>

instructs the computer to immediately display all program lines
currently in memory. A command may not be part of the program.

All BASIC commands may be abbreviated by the first two letters
in the command. For example, LIST may be abbreviated by:

*LI <ENTER>

You may specify certain parameters for some of these commands.
For example:

*LIST 50-80

instructs the computer to immediately list lines 50 through 80.
The parameter is 50-80.

When typing a command with a parameter, there must be a space or
a comma after the command. This, for example would produce an
error:

*LIST50-80

A few of the commands also include options:

*LIST 50-80 (PRT)

lists lines 50-80 on the line printer. The option is (PRT).
Options may always be omitted from the command if you don't want
to use them.

----------1tad1elhaell----------

PAGE 2 - 4

MODEL I/III COMPILER BASIC COMMANDS

------------TRs ... ao@ ___________ _

-- COMMAND --

APPEND
Append Two Programs

APPEND file
'file' is a TRSDOS file specification for

a BASIC source program.

APPEND joins a program from disk to the resident program. The
appended disk program is renumbered to follow the resident
program. Its first renumbered line is computed by adding ten to
the last line number of the resident program. Ten is added to
each successive line.

While the program is being appended, you may stop this process
by pressing <BREAK>. The lines already Appended will stay in
your resident file, so if you <BREAK> in on the APPEND command,
be sure to Delete those added lines if you do not want them in
the resident file.

Only source programs can be appended. You can not use APPEND to
append an object program from disk which was created with the
COMPILE command.

Resident Program Disk Program

10 10

20 20

30 30

40

50

t 60 I
I I
. _______________________ ,

®

PAGE 2 - 5

MODEL I/III COMPILER BASIC COMMANDS

-------------TRS-ao@ ___________ _

Examples

APPEND PART2/BAS:l

This loads the program PART2/BAS from drive 1. It is renumbered
to follow the resident program.

APPEND PROG2

PROG2 is appended to the resident program. Since no drive is
specified, BASIC will begin searching for it in drive 0.

AP GRAPH/SUB

The subprogram GRAPH/SUB is appended to the main program in
resident memory.

--------llafl1elhaeli--------

PAGE 2 - 6

MODEL I/III COMPILER BASIC

--COMMAND --

AUTO
Number Lines Automatically

AUTO startline, increment
'startline' is a line number specifying the first

line number to be used.
'increment' is a number specifying the increment

to be used between lines. If increment
is omitted, 10 is used.

If both 'startline' and 'increment' are omitted,
startline will be the last line plus 10 and
increment will be 10.

COMMANDS

The AUTO command helps you type program lines faster by
automatically numbering each line. To use it, type AUTO, then
type the number you want as your first automatic line number
(startline), and then, finally, type the number of lines you
want between each program line (increment).

After you type this command and press <ENTER>, BASIC will supply
you with the first line number. All you have to do is type in
your program statement and press <ENTER>. BASIC will then
supply the next line number.

To turn off AUTO, press <ENTER> after AUTO displays a line
number. If AUTO supplies you with a line number that has an
asterisk beside it, this means you have already used this
program line. Press <ENTER> if you do not want to change the
line.

Examples

AUTO

If you have not typed any program lines yet, this will start
automatic line numbering with line 10. If you have typed any
program lines, automatic line numbering will start at 10 plus
the last program line. This command increments each line number

®

PAGE 2 - 7

MODEL I/III COMPILER BASIC COMMANDS

-------------TRs-ao@ ___________ _
by 10.

AUTO 100

starts numbering with 100, using increments of 10 between line
numbers.

AUTO 1000, 100

starts numbering with 1000, using increments of 100 between line
numbers.

AU 5

starts numbering with 5 using increments of 10 between line
numbers.

----------- ltadaelhaeli----------
PAGE 2 - 8

MODEL I/III COMPILER BASIC COMMANDS

------------- TRS-so@ ___________ _

-- COMMAND --

BREAK
Set or Remove Program Breakpoints

BREAK line number, •••
If 'line number' is omitted, all breakpoints will be

cleared.

BREAK sets a certain line or series of lines as a breakpoint in
the program. When BASIC encounters this line it will stop
executing the program and return to the command mode. This will
happen before the breakpoint line is executed. Use the GO
command to continue program execution.

You can set more than one breakpoint. To clear all the
breakpoints, use BREAK without any line numbers.

Examples

BREAK 120

When the program is run, BASIC will stop execution and enter the
command mode immediately before line 120.

BREAK 200, 300, 400

This sets lines 200, 300, and 400 as breakpoints. BASIC will
stop program execution when it encounters ,any of these lines.
The GO command continues program execution to the next
breakpoint or to the end of the program.

BR

This clears all the breakpoints. The program will execute
normally.

---------lladlOlhaeli---------
PAGE 2 - 9

MODEL I/III COMPILER BASIC

-- COMMAND --

CHANGE
Change Program Lines

CHANGE startline-endline del oldstring del
newstring del A

COMMANDS

'startline' and 'endline' are line numbers specifying
the lower and upper limits of program lines
that will be changed. If 'endline' is omitted,
only 'startline' will be changed. If both
'startline' and 'endline' are omitted,
the entire program will be changed.

'oldstring• and 'newstring' are string constants
'del' is any non-numeric character other than n_n.

If A is omitted, only the first occurrence of
'oldstring' in a program line will be changed.

CHANGE edits program lines by replacing the oldstring with the
newstring. CHANGE, of course, can only be used on source
programs which are in their original BASIC form.,

Examples

CHANGE 100-200/PRINT/LPRINT

The first occurrence of "PRINT" in all lines from 100 to 200 are
changed to "LPRINTvu .. Notice that since the A option is not
used, only the first occurrence is changed .. In this example,
slashes are used as delimiters, although any other character
besides the hyphen could have been used ..

CHANGE,TAB(l0),TAB(S),A

Every occurrence of "TAB (10) n is replaced by "TAB (5) 0
' in all of

the lines. Commas are used here as delimiters ..

CHANGE 500-1000/REM/

The first occurrence of "REM" in all lines from 500 to 1000 is

--------- It ff)

PAGE 2 - 10

MODEL I/III COMPILER BASIC COMMANDS

------------TRS-so@ ___________ _

changed to the null string; i.e., deleted.

CH 100/JOHN ANDERSON/JAMES KNIGHT

Changes the first occurrence of "JOHN ANDERSON" in line 100 to
"JAMES KNIGHT II.

----------1tad1elllaeli----------
PAGE 2 - 11

MODEL I/III COMPILER BASIC COMMANDS

-- COMMAND --

CLEAR
Clear All Programs from Memory

CLEAR

When CLEAR is used, all programs are deleted from memory, all
variables are undefined, and the system is returned to its
initial state. Unlike NEW, CLEAR will also delete compiled
object programs from memory.

Example

CLEAR

All programs presently in memory are cleared. All variables are
undefined.

--------ltatlle e~------------
PAGE 2 - 12

MODEL I/III COMPILER BASIC COMMANDS
------------TRS-BO@ __________ _

-- COMMAND --

COMPILE
Compile BASIC Program

COMPILE source file, object file (LIST, PRT=listing
file, MAP, XREF)

'source file' and 'object file' are TRSDOS file
specifications.
'source file' is a BASIC source program file
'object file' is the object program file that

COMPILE will create
All the options below may be omitted:

LIST generates a source listing containing the
module relative location of every statement.

PRT causes all listings to be printed on the
line printer.

PRT='listing file'. Routes the printer-formatted
listing to the specified file. This must be

used in conjunction with LIST, XREF, or MAP.

MAP generates a memory map showing the location of
each variable in the program.

XREF prints a cross reference of every reference
to every variable in the program.

COMPILE translates and saves a BASIC program on disk as a
pseudo-code program. Once a program is compiled, it is no
longer a BASIC program. It may not be changed.

For this reason, it is advisable to keep a disk copy of your
BASIC source program file until you are sure that you will not
want to revise it any more.

There are several advantages to having a compiled disk copy of
your BASIC program:

1. The compiled program takes up less room, both on
diskette and in memory.

2. If you will be using the stand-alone Runtime System
(described in the Programmers Information Section) to run your
program, the program must be compiled.

-----------rtad1elllaell----------
PAGE 2 - 13

MODEL I/III COMPILER BASIC COMMANDS

To compile a BASIC program, follow this procedure:

1. use the SAVE command to save your BASIC source program
file on disk. Then you may •..

2. use the COMPILE command to create an object code program
file on disk from the BASIC source program file.

If the file name you assign to the compiled program already
exists, the existing file's contents will be wiped out. It will
be replaced by your program.

COMPILE can be used with four options:

A. LIST generates a listing of the program containing the
relative memory location of every statement. In the listing
below:

*COMPILE DEMO/BAS, DEMO/OBJ (LIST)
0000 10 REM *** SAMPLE PROGRAM TO COMPILE***
0000 20 DIM A(5)
0000 30 FOR I= 1 TO 5
0016 40 A(I) =I+ 10
0026 50 NEXT I
002D 60 8$ = "THIS IS A SCALAR VARIABLE"
0032 70 C% = 4
0037 80 D = 5.234
FINAL SUMMARY

142 (008E) BYTES OF PROGRAM
332 (014C) BYTES OF LOCAL DATA

8 SOURCE LINES
8 SOURCE STATEMENTS

*** COMPILATION COMPLETE***

*

1. the source program is displayed
2. the relative memory location of each statement is

displayed in hexadecimal notation. For instance, if the program
originates at memory location hex 4000, the code for the
statement in line 40 would begin at location hex 401A.

3. the final summary displays that the entire program uses
142 bytes of memory. The variables in the program use 332
bytes.

----------ftad1e/haeli----------
PAGE 2 - 14

MODEL I/III COMPILER BASIC COMMANDS

B. MAP shows the hexadecimal memory location of the
variables in the program. In the example below:

*COMPILE
SYMBOLIC
SCALARS
0078
00A2
ARRAYS
0070

*

B
D

DEMO/BAS, DEMO/OBJ (MAP)
MEMORY MAP

STRING*255
REAL

00A0
008E

ACS) REAL

C
I

INTEGER
REAL

the program contains four scalars (simple variables) and one
array variable& In this example Bis a string variable
containing 255 bytes. It is stored beginning at location hex
0078. A is an array of real numbers containing five elements
beginning at location hex 00700

C. XREF generates a cross reference listing. Each variable
is cross referenced with all the line numbers which referenced
it. In the example below:

*COMPILE DEMO/BAS, DEMO/OBJ (XREF)
CROSS REFERENCE LISTING
SCALARS
B
C
D
I
ARRAYS
A

*

60
70
80
30

20

40

40

40 50

the variable I is referenced on lines 30, 50, and twice on line
40 0

D. PRT causes any of the above listings to be listed on the
line printer.

-----------lad1elhaeli----------
PAGE 2 - 15

MODEL I/III COMPILER BASIC COMMANDS

-----------TRS-ao@ __________ _

E. PRT = 'listing file'. This causes the listing to be saved
in the specified file. This option must be used in conjunction
with LIST, MAP, or XREF. For example:

COMPILE FILE/BAS, FILE/OBJ (LIST, PRT=FILE/LST)

creates a listing file containing a list of FILE.

COMPILE FILE/BAS, FILE/OBJ (MAP, PRT=FILE/LST)

creates a listing file containing a map of FILE.

To print the listing file, you must use a special program named
LIST/OBJ, which is on your Compiler BASIC diskette. Instructions
on how to use it is in the Appendix "LIST and SAMPLE Programs" ..

Examples

COMPILE BILLING/BAS:0, BILLING/CMP:l

The program BILLING/BAS in drive O is compiled and saved as a
pseudo-code program named BILLING/CMP on the disk in drive 1.

COMPILE BASIC, OBJECT

The program BASIC is compiled and saved as a pseudo-code program
named OBJECT.

COMPILE PAYROLL/BAS, PAYROLL/CMP (LIST, PRT)

The source program PAYROLL/BAS is compiled and saved on disk as
the pseudo-code program PAYROLL/CMP. A listing showing relative
memory locations is printed on the line printer.

CO ENTRY/BAS, ENTRY/CMP (MAP, XREF)

BASIC compiles this file and displays a memory map and a cross
reference listing.

----------ltadaelllaeli----------
PAGE 2 - 16

MODEL I/III COMPILER BASIC COMMANDS

------------TRs-so@ ___________ _

-- COMMAND --

DELETE
Erase Program Lines from Memory

DELETE startline-endline
'startline' is an existing program line number

specifying the lower limit for deletion.
'endline' is an existing program line number

specifying the last line inyour program
that you want to delete. 'endline' must
reference an existing program line.
If omitted, only 'startline' will be deleted.

DELETE removes one or more program lines from memory. Another
way to delete one program line is to simply type the line number
and press <ENTER>.

Examples

DELETE 70

Erases line 70 from memory. If there is no line 70, you will
get an error message.

DE 50-110

Erases lines 50 through 110, inclusive.

70

Erases line 70.

----------1tad1elhaeli----------
PAGE 2 - 17

MODEL I/III COMPILER BASIC COMMANDS
-------------TRs-eo@ ___________ _

COMMAND

DISPLAY
Display Variable Contents

DISPLAY subname; variable list, subname; variable
name •••

'subname' is the name of a subprogram. If
omitted, the variable contents of the main
program will be displayed.

This command displays the contents of variables in the resident
source program. To display the contents of a subprogram's
variables, you must specify the name of the subprogram.

All variables are undefined until the program has been compiled.
Therefore, you must compile the program first by executing it
before using the DISPLAY command.

Examples

DISPLAY A

Displays the contents of variable A in main memory.

DISPLAY A,B$

Displays the contents of variables A and B$ in main memory.

DI SUBPROG; X

Displays the contents of variable X in the subprogram named
SUBPROG.

DI SUBPROG; X, Y

Displays the contents of variable X in SUBPROG and variable Yin
the main program or subprogram being executed.

---------- llad1elhaeli----------
PAGE 2 - 18

MODEL I/III COMPILER BASIC COMMANDS

------------TRS-so@ ___________ _

-- COMMAND --

DUPLICATE
Duplicate Program Statements

DUPLICATE startline-endline, new startline
'startline' and 'endline' are_the lower and upper

boundaries of the lines you want to duplicate.
If 'endline' is omitted~ only 'startline' will
be duplicated ..

'new startline' is the program line which you want
the duplic~ted lines to follow. 'New startline'
must be a current program line.

DUPLICATE copies existing program statements to another area of
the program. The duplicated program statements begin at 1 + the
current program line number you specify. Each successive line
number is incremented by one. DUPLICATE does not change any of
the existing program statements.

If BASIC must wipe out an existing program statement to
duplicate a statement in the area of the program that you
specify, it will give you an error message.

As with all editing commands, this command may not be used on a
compiled object code program.

Examples

DUPLICATE 100-150, 300

The statements in line numbers 100-150 are copied. The
duplicated statements appear on line numbers 301, 302, with each
additional line number incrementing by 1 until all the
statements are copied.

DU 100, 50

The statement on line 100 is copied and appears on line 51.

-----------lladaelhaeli-----------
PAGE 2 - 19

MODEL I/III COMPILER BASIC COMMANDS
-----------TRS-BO@ __________ _

-- COMMAND --

GO
Start or Continue Program Execution

GO

GO continues execution of the program after a breakpoint has
been encountered. (See BREAK and STEP for information on how to
set the break program execution). The GO command can also be
used at the beginning of a program to start program execution.

Example

GO

Starts or continues executing the program.

----------1tafl1e/haeli----------
PAGE 2 - 20

MODEL I/III COMPILER BASIC COMMANDS

-------------TRS-so@ ___________ _

-- COMMAND --

KILL
Delete File from Disk

KILL file
'file' is a TRSDOS file specification.

KILL deletes the file you specify from the diskette directory.
You may Kill a file you will not use again to make room for
storing another file.

If you do not specify a disk drive in the file specification,
BASIC will search for the first drive that contains the file,
and delete it.

Make sure that you do not Kill an open file. If you have used
the OPEN statement to open a file, close it before Killing the
file.

Examples

KILL FILE/BAS

deletes FILE/BAS from the diskette in the first drive that
contains it.

KILL DATA:2

deletes DATA from the diskette in drive 2 only.

----------1tad1e lhaell-----------
PAGE 2 - 21

MODEL I/III COMPILER BASIC COMMANDS
-------------TRs-ao@ ___________ _

-- COMMAND --

LIST
Display Program Lines

LIST startline-endline string A (PRT)
'startline' is a line number specifying the lower

limit for the listing.
'endline' is a line number specifying the upper limit

for the listing. If omitted, only 'startline'
will be listed.

'string' is a string constant or a string variable.
If A is omitted, only the first statement which
contains 'string' will be listed. 'string' A may
be omitted.

PRT causes the listing to appear on the line printer
rather than the video display.

Note: if both 'startline' and 'endline' are omitted,
the entire program will be listed.

The LIST command gets the Computer to display a program line or
a group of program lines that are currently in memory. If you
do not specify any line numbers with the LIST command, it will
list all tne-clines. You can use the PRT option to cause the
listing to be printed on the line printer, but if the 'string'
option is used, the 'A' option must also be used.

You may specify a certain string you would like listed by
putting it between any two non-numeric delimiting characters
except" "

Examples

LIST

Displays the entire program. To stop the automatic scrolling,
press <shift@>. This will freeze the display. Press <shift@>
again to continue the listing.

LIST 50

----------rtadaelhaeli-----------
PAGE 2 - 22

MODEL I/III COMPILER BASIC COMMANDS

--~----------TRS-ao@ ___________ _

Displays line 50

LIST 50-85

Displays lines 50 through 85, inclusively.

LIS'r 50 (PRT)

Prints line 50 on the line printer.

LIST 50-85 (PRT)

Prints lines 50 through 85, inclusively, on the line printer.

LIST "PRINT" A

Lists all statements which contain the word PRINT

LI /INSERT/

Lists the first statement which contains the word "INSER'r".

LI 50-80/INSERT/A (PRT)

Lists all statements between line 50 and line 80, inclusively,
which contain the word INSERT, on the line printer.

LI 50-80/INSERT/ (PRT)

Will cause a syntax error.

---------1tad1elllaell---------

PAGE 2 - 23

MODEL I/III COMPILER BASIC COMMANDS

-------------TRs-ao@ _________,... __

-- COMMAND --

LOAD
Load Compiled BASIC Programs

LOAD file
'file' is a TRSDOS file specification for a

compiled object code program.

The LOAD command is used to load compiled programs, which were
stored on disk using the COMPILE command, into memory. It will
only load object code programs. Use OLD to load BASIC source
programs from disk which were stored with the SAVE command.

LOAD can be used to load main programs or subprograms. Since
LOAD does not clear resident programs, more than one program can
be loaded before executing them. The loading process links the
programs together.

Examples

LOAD PROGl/CMP:2

This loads PROGl/CMP from drive 2.

LOAD PROGl/CMP

Since no drive specification is included in this command, BASIC
will begin searching for this program file, starting with drive
0.

LO SUBPROG/CMP:l

BASIC loads this subprogram from drive 1.

--------ltadle ®

PAGE 2 - 24

MODEL I/III COMPILER BASIC

-- COMMAND --

MERGE
Merge Disk Program with Resident Program

MERGE file
'file' is a TRSDOS file specification for a BASIC

source file.

COMMANDS

You can use the MERGE command to merge two BASIC source programs
into one. MERGE takes a BASIC source program from disk and
merges it with the BASIC program you presently have resident in
memory.

Both programs must be BASIC source programs. You may not Merge
compiled programs.

The program lines from the disk program are merged into the
resident program. For an example of how this works, say the
disk program contains line numbers 75, 85, and 90. The main
program contains lines 70, 80, and 100. When MERGE is used on
the two programs, the new program will be numbered 70, 75, 80,
85, 90, 100.

If the line numbers on the disk program coincide with the
resident program, the resident lines will be replaced by the
disk program. For example, if the disk program is numbered 5,
10, and 20, and the resident program is numbered 10, 20, and 30,
the Merged program will be numbered 5, 10, 20, 30. Lines 10 and
20 of the new program will be identical to lines 10 and 20 on
the disk program.

MERGE closes all files and deletes all variables.

----------- ladaelhaeli-----------
PAGE 2 - 25

MODEL I/III COMPILER BASIC COMMANDS
-------------TRS-BO (!@ ___________ _

Resident Program

10

20

30

Examples

MERGE PROG

Disk Program

10

15

25

Merged Program

10

15

20

25

30

This merges the BASIC source program on disk named PROG with
whatever BASIC program is resident in memory.

ME PROG/BAS:l

This merges PROG/BAS from the disk drive number 1 with the BASIC
program resident in RAM.

----------- lladae/haell-----------
PAGE 2 - 26

MODEL I/III COMPILER BASIC COMMANDS
-------------TRS-BO@) ___________ _

-- COMMAND --

NEW
Erase BASIC Program from Memory

NEW

NEW erases an entire BASIC source program from memory.

NEW does not erase a compiled program which was loaded with the
LOAD command.* Use CLEAR to erase all programs from memory.

*NEW will erase a compiled program which was loaded with the RUN
command.

Example

NEW

Sample Use

NEW can be very helpful when you want to erase your main BASIC
program, but would like to keep your compiled subprograms in
memory to use with your next BASIC program. By executing the
command:

NEW

Your main BASIC program is erased from memory, but all object
programs remain. You may now load or type in another BASIC
program to use with your compiled subprograms.

----------- ltadaelhaeli-----------
PAGE 2 - 27

MODEL I/III COMPILER BASIC

-- COMMAND --

OLD
Load BASIC Source Program

OLD file
'file' is a TRSDOS file specification for a

BASIC source program file

COMMANDS

The OLD command loads a BASIC source program, saved on disk,
into RAMe OLD will only load BASIC source programs. Use LOAD
to load a compiled program.

Since OLD clears all resident BASIC programs before loading a
program, only one BASIC program may be loaded into memory with
this command. To get other BASIC programs into memory, use
MERGE or APPEND.

Examples

OLD PROG/BAS:2

Loads PROG/BAS into RAM from drive 2.

OL PROG/BAS

Loads PROG/BAS into RAM. Since no drive specification is
included, BASIC will begin searching for it in drive 0.

--------ftadlO ®

PAGE 2 - 28

MODEL I/III COMPILER BASIC COMMANDS

------------ TRS-ao@ __________ _

RENUMBER
Renumber Program

-- COMMAND --

RENUMBER newline, increment
'newline' specifies the new line number of the first

line to be renumbered.
'increment' specifies the increment to be used

between each successive renumbered line. If
'increment' is omitted, 10 is used.

If both 'newline' and 'increment' are omitted, 10
is used for newline and 10 for increment.

RENUMBER changes all the line numbers in your program. It also
changes all line number references appearing after GOTO, GOSUB,
THEN, ELSE, ON ... GOTO, ON ... GOSUB, and ON ERROR GOTO.

Examples

RENUMBER

Renumbers the entire resident program. The first new line
number is 10 and each line is incremented by 10.

RENUMBER 6000, 100

Renumbers the program. The first new line number is 6000 and
each line is incremented by 100.

RE 10000

Renumbers the program. The first new line number is 10000 and
each line is incremented by 10.

----------- rtat11e lhaeli----------
PAGE 2 - 29

MODEL I/III COMPILER BASIC COMMANDS
--------------TRS-BO@ ___________ _

-- COMMAND --

RUN
Execute Program

RUN file
'file' is a TRSDOS file specification. It may

be a BASIC source program file or an object
code program file. If omitted, the resident
program will be run.

RUN is the command that executes your program. RUN compiles, if
necessary, and executes the program that is in resident memory.
If the program is in the form of a BASIC source program, there
will be a short delay while RUN is compiling the program before
running it.

If you include a file specification, BASIC will Load or Old the
program from disk and execute it. You may have BASIC Run either
a BASIC source program or a compiled program. If you use RUN to
run a compiled program, be sure to first clear any BASIC
programs you have in resident memory.

RUN

Executes the program in resident memory.

RUN PROGRAM/CMP:2

Loads the compiled program PROGRAM/CMP from drive 2 and executes
it.

RUN PROGRAM/BAS

Loads the BASIC source program PROGRAM/BAS and executes it.

RU PROGRAM

Loads the program PROGRAM and executes it.

----------rtad1elhaell----------

PAGE 2 - 30

MODEL I/III COMPILER BASIC COMMANDS

--------------TRS-BO@ ____________ _

-- COMMAND --

SAVE
Save BASIC Source Program on Disk

SAVE file
'file' is a TRSDOS file specification. If

omitted, the program will be saved under
the file specification used in the last
OLD command.

BASIC has two commands for storing programs on a disk file: SAVE
and COMPILE. SAVE stores the program in its existing BASIC
source program format. COMPILE converts the program and stores
it as an object code or machine language program.

SAVE is the best command to use when storing programs that you
might list, revise, or add to in the future. To use it type
SAVE and the appropriate file specification. (See the section
on TRSDOS file specifications).

If you SAVE a program using a file specification that already
exists, the existing program file will be wiped out. It will be
replaced by the program file you are saving.

You may leave out the file specification with SAVE. The program
will then be saved under the same file specification that you
used to load the last program with the OLD command.

To label the files that are BASIC source programs versus the
Compiled object programs, we suggest you use the extension /BAS
for Saved programs and /CMP for Compiled ~rograms.

A Saved program is in ASCII code or text format.

Examples

SAVE FILEl/BAS.JOHNQDOE:3

---------- llad1e lhaeli----------
PAGE 2 - 31

MODEL I/III COMPILER BASIC COMMANDS
-------------TRS-BO@) ___________ _

Saves the resident BASIC program. The filename is FILEl, the
extension is /BAS, and the password is JOHNQDOE. The file is
stored on the disk in drive 3.

SAVE FILEl/BAS

Saves the resident BASIC program. The filename is FILEl and the
extension is /BAS. Since no drive is specified, BASIC will
store the program in the first drive which has room for it.

SA

Saves the resident BASIC program. It will be saved under the
same file specification used in the last OLD command.

----------lladaelhaell----------

PAGE 2 - 32

MODEL I/III COMPILER BASIC COMMANDS

-------------TRS-BO@ ____________ _

-- COMMAND --

SIZE
Print Used and Unused Memory

SIZE

By executing the SIZE command, BASIC will print the amount of
space being used by the resident program and the amount of space
that is unused. The values are expressed in bytes both as a
decimal and a hexadecimal value.

Example

SIZE

Prints the number of bytes the resident program is using, and
the number of unused bytes remaining in memory.

---------1tad1elhaell--------
PAGE 2 - 33

MODEL I/III COMPILER BASIC COMMANDS
-------------TRS-BO @ ___________ _

-- COMMAND --

STEP
Execute Portion of Program

STEP number
'number' is the number of lines to execute

STEP executes the number of lines in the program you specify,
beginning with the next executable statement.

STEP is normally used in debugging a program. You may execute
the entire program portions at a time using STEP.

Example

STEP 5

Executes the next five statements in the program.

----------lladaelhaeli----------
PAGE 2 - 34

MODEL I/III COMPILER BASIC COMMANDS

-------------TRS-so@ ___________ _

-- COMMAND --

SYSTEM
Return to TRSDOS

SYSTEM

SYSTEM returns you to TRSDOS, the disk operating system.

Examples

SYSTEM

Returns you to TRSDOS READY. Your resident BASIC program will
be lost.

----------1tad1elhaeli----------
PAGE 2 - 35

MODEL I/III COMPILER BASIC COMMANDS

---------------- TRS-BO@) ___________ _

TRACE ON, TRACE OFF
Turn Tracer On, Off

TRACE ON
TRACE OFF
TRACE

-- COMMAND --

TRACE is a useful command for debugging and analyzing a program.
TRACE ON turns on a tracer. Each time the program advances to a
new program line, the line number will be displayed.

TRACE OFF turns the tracer off. TRACE prints whether the tracer
is on or off.

Examples

TRACE ON

When the program is RUN each program line number will be printed
in while that line is executing.

TR OFF

Turns off the tracer.

TRACE

Prints whether the tracer is on or off.

----------rtadaelhaeli----------
PAGE 2 - 36

Section 2

Programming
with RSBASIC

Information on writing
a program with RSBASIC

~ TRS-BO

CAT. NO.

26-2204

TM

SOFTWARE

CUSTOM MANUFACTURED IN USA av RADIO SHACK, A DIVISION OF TANDY CORP.

Compiler BASIC supplies the language RSBASIC to use in writing
programs. RSBASIC is a form of BASIC, and in this manual, we
refer to it as BASIC. This section has the reference
information you need to use RSBASIC.

We are assuming that you are already familiar with BASIC. If
you are a newcomer to BASIC, there are many good BASIC teaching
books available. Here are some we recommend:

COMPUrrER PROGRAMMING IN BASIC FOR EVERYONE, Thomas Dwyer and
Michael Kaufman, Radio Shack Catalog Number 62-2015.

BASIC AND THE PERSONAL COMPUTER, Thomas Dwyer and Margot
Critchfield; Addison-Wesley Publishing Company, 1978.

BASIC FROM THE GROUND UP, David E. Simon; Hayden Book Company,
1978.

ILLUSTRA'rING BASIC, Donald Alcock; Cambridge University Press,
1977.

TABLE OF CONTENTS
SECTION 2. PROGRAMMING WITH RSBASIC

Chapter 3.
BASIC Concepts 3-1 through

Explains how BASIC handles and 3-37
manipulates data

Chapter 4.
Building Data Files 4-1 through

Shows how to create and store 4-39
data files

Chapter 5.
Segmenting Programs 5-1 through

Demonstrates how to divide a 5-14
long program into shorter programs
and subprograms

Chapter 6.
BASIC Keywords 6-1 through

Contains an alphabetical entry 6-195
for each keyword

------------ rt

-------------TRS-BO@) ___________ _

SPECIAL MODEL I/III PROGRAMMING TIPS

Programming the Video Display

The Model I/III Video Display has two modes: scroll and
graphics. With the exception of graphics characters, BASIC
prints all output to the display using the scroll mode. See
PRINT for information on programming in the scroll mode. See
CRTG for information on programming in the graphics mode. (Both
PRINT and CRTG are in the Keywords Chapter).

----------ltadaelllaeli----------

-------------TRS-BO@) ___________ _

*
*
*
*
*

Chapter 3

BASIC Concepts

*
*
*
*
*

----------1tad1elhaell----------

MODEL I/III COMPILER BASIC BASIC CONCEPTS
-------------TRs-eo@ ___________ _

INTRODUCTION

This chapter explains how BASIC handles and manipulates data.
This information will prove helpful in writing programs which
handle data more efficiently.

OUTLINE OF CHAPTER 3
BASIC CONCEPTS

I. Overview -- Elements of a Program
A. Program
B. Statements
C. Expressions
D. Tests

II. How BASIC Handles Data
A. Ways of Representing Data

1. Constants
2 • Variables

a. Variable Names
b. Reserved Words
c. Simple and Subscripted Variables

B. How BASIC Stores Data
1. Numeric Data

a. Integers
b. Real Numbers

2 • String Data
C. How BASIC Classifies Constants
D. How BASIC Classifies Variables
E. How BASIC Converts Numeric Data

1 . Real Number to Integer Type
2. Integer to Real Number Type
3 . Illegal Conversions

III. How BASIC Performs Operations on Data
A. Operators

1. Numeric
a. Addition
b. Subtraction
c. Multiplication
d. Division
e. Integer Division
f. Exponentiation
g. Modulus Arithmetic

2. String
3. Test Operators

a. Relational

------------- ltadae lhaeli-----------
PAGE 3 - 1

MODEL I/III COMPILER BASIC BASIC CONCEPTS

-------------TRS-so@ ___________ _

b. Logical
Bo Functions

IV. Syntax of Expressions
A. Simple Expression
Bo Complex Expression
C. Function

----------l'lad1elhaell---------

PAGE 3 - 2

MODEL I/III COMPILER BASIC BASIC CONCEPTS
-------------TRS-eo@ ___________ _

OVERVIEW -- ELEMENTS OF A PROGRAM

PROGRAM

A program is made up of one or more numbered lines. Each line
contains one or more BASIC statements. BASIC allows line
numbers from Oto 65535 inclusive. The maximum number of lines
BASIC allows in a program are 2048 lines.

You may include up to 255 characters per line, not including the
line number. You may also have two or more statements to a
line, separated by colons.

Here is a sample program:

line
number

BASIC
statement

colon between
statements

BASIC
statement

100 PRINT PRINT "'rHIS IS THE FIRST PRINT LINE"
110 FOR I= l TO 1000: NEXT I 'DELAY LOOP
120 PRINT STRING$(28,"-");
130 PRINT "THIS IS THE NEXT"

When BASIC executes a program, it handles the statements one at
a time, starting at the first and proceeding to the last. Some
statements, such as GOTO, ON ... GOTO, GOSUB, change this
sequence.

STATEMENTS

A statement is a complete instruction to BASIC, telling the
Computer to perform some operations. For example:

----------1tad1elhaeli----------
PAGE 3 - 3

MODEL I/III COMPILER BASIC BASIC CONCEPTS

GOTO 100

Tells the Computer to perform the operations of (1) locating
line 100 and (2) executing the statement on that line.

STOP

Tells the Computer to perform the operation of stopping
execution of the program.

Many statements instruct the computer to perform operations with
data. For example, in the statement:

PRINT "SEPTEMBER REPORT"

the data is SEPTEMBER REPORT. The statement instructs the
Computer to print the data inside the quotes.

EXPRESSIONS

An expression is actually a general term for data. There are
two types of expressions:

1. Numeric expressions, which are composed of numeric
data. Examples:

(1 + 5.2) / 3
5 * B
ABS(X) + RND(0)

D
3.7682
SIN(3 + E)

2. String expressions, which are composed of character data.
Examples:

A$
"STRING" & "DATA"
SEG$(A$,2,5) & SEG$("MAN",1,2)

Functions

"S'l1RING"
MO$ & "DATA IV

M$ & A$ & B$

Functions are automatic subroutines. Most BASIC functions
perform computations on data. Some serve a special purpose such
as controlling the video display. You may use functions in the
same manner that you use any data -- as part of a statement.

----------1tad1olhaell----------

PAGE 3 - 4

MODEL I/III COMPILER BASIC BASIC CONCEPTS

-------------TRS-so@ ___________ _

These are some of BASIC's functions:

INT
ABS
STRING$
SEG$

TESTS

BASIC will perform two kinds of tests to see if a certain kind
of relationship exists between two or more expressions:

1. Relational tests, which test the equivalency relationship
between the two expressions. Examples:

A = 1
A$> B$

2. Logical tests, which test the logical relationship
between relations. Examples:

A$= "YES" AND B$ = "NO"
C > 5 ORM< B ORO> 2

For the rest of this chapter, we will cover in detail the way
BASIC handles data and data operations, and how to input data
into your program. The preceding overview should give you
enough information if you are in a hurry to begin using Compiler
BASIC.

----------- llaflae/haell-----------

MODEL I/III COMPILER BASIC BASIC CONCEPTS

--------------- TRs-ao@ ___________ _

HOW BASIC HANDLES DATA

This section provides information on how to represent data to
BASIC and how BASIC will interpret and store it. It contains
the necessary background information for writing programs which
handle data efficiently.

WAYS OF REPRESENTING DA'rA

BASIC recognizes data in two forms -- either directly, as
constants, or by reference to a memory location, as variables.

Constants

All data is input into a program as "constants" -- values which
are not subject to change. For example, the statement:

PRINT "l PLUS 1 EQUALS"; 2

contains one string constant,

1 PLUS 1 EQUALS

and one numeric constant

2

In these examples, the constants are "input" to the PRINT
statement. They tell PRINT what data to print on the Display.

----------rtad10/haeli----------

PAGE 3 - 6

MODEL I/III COMPILER BASIC BASIC CONCEPTS

-------------TRs-so@ ____________ _

These are more examples of constants:

3.14159
l.775E+3
"NAME TITLE"
57

Variables

"L. 0. SMITH"
"0123456789ABCDEF"
-123.45E-8
"AGE"

A variable is a place in memory -- a sort of box or pigeonhole
-- where data is stored. Unlike a constant, a variable's value
can change. This allows you to write programs dealing with
changing quantities. For example, in the statement:

A$= "OCCUPATION"

The variable A$ now contains the data OCCUPATION. However, if
this statement appeared later in the program:

A$= "FINANCE"

The variable A$ would no longer contain OCCUPATION. It would
contain the data FINANCE.

Variable Names

In BASIC, variables are represented by names. Variable names
must begin with a letter, A through z. This letter may be upper
or lower case and may be followed by up to 5 characters
either digits or letters -- for a total of 6 characters.

For example

AMOUNT A Al2345 Al BlAB2 aB

are all valid and distinct variable names.

Variable names may be longer than six characters. However, only
the first six characters are significant in BASIC.

---------ltadaolhaeli---------
PAGE 3 - 7

MODEL I/III COMPILER BASIC BA.SIC CONCEPTS
-------------TRs-ao@ ___________ _

For example:

SUPERN SUPERNUM SUPERNUMERARY

are all treated as the same variable by BASIC.

Reserved Words

BASIC has reserved certain words as BASIC functions. You cannot
use these or the operator NOT as variable names. For example:

ABS SIN LEN ASC

cannot be used as variable names, because they are BASIC
functions. However you can use reserved words inside variable
names. For example, ABSl and LENGTH are okay.

A BASIC statement may be used as long as it does not start the
statement. For example:

LET LET= 10

is okay, but

LET= 10

is not.

Simple and Subscripted Variables

All of the variables mentioned above are simple variables (also
termed scalars). They can only refer to one data item.

Variables may also be subscripted so that an entire list of data
can be stored under one variable name. This method of data
storage is called an array. For example, an array named A may
contain these elements (subscripted variables):

A (0) A(1) A(2) A (3) A (4)

You may use each of these elements to store a separate data
item, such as:

A (0)
A (1)
A (2)
A (3)

=
=
=
=

5.3
7.2
8.3
6.8

---------llad1elhaell---------

PAGE 3 - 8

MODEL I/III COMPILER BASIC BASIC CONCEPTS

-------------TRS-BO@ ___________ _

A(4) = 3.7

In this example, array A is a one dimensional array, since each
element contains only one subscript. An array may also be two
dimensional, with each element containing two subscripts. For
example, a two-dimensional array named X could contain these
elements:

X(0,0) = 8.6
X(l,0) = 7.3

X(0,l) = 3.5
X(l,1) = 32.6

Compiler BASIC does not allow for more than two dimensions to an
array.

Arrays must always be dimensioned before they are used, to
reserve room in memory for them. The DIM statement dimensions
arrays. Array A, in the example above would be dimensioned
with:

DIM A(4)

to allow room for 5 subscripted variables (0, 1, 2, 3, and 4).
Array X would be dimensioned with:

DIM X(l,1)

to allow room for 2 subscripted variables in one dimension and 2
in the second dimension for a total of 2 * 2 = 4 subscripted
variables.

Note: See DIM for more information on arrays.

---------rtadaelhaeli---------
PAGE 3 - 9

MODEL I/III COMPILER BASIC BASIC CONCEPTS

------------TRS-BO@)------------

HOW BASIC STORES DATA

The way that BASIC stores data determines the amount of memory
it will consume and the speed in which BASIC can process it.

Numeric Data

BASIC stores all numbers as either integer or real.

Integers
(Speed and Efficiency, Limited Range)

To be stored as an integer, a number must be whole and in the
range of -32768 to 32767. An integer value requires only two
bytes of memory for storage. Arithmetic operations are faster
when both operands are integers.

For example:

1 32000 -2 500 -12345

can all be stored as integers.

Note: Integers are stored in two's complement notation. An
explanation of that is in the Programmers Information Section.

Real Numbers
(Maximum Precision, Slower in Computations)

BASIC can store up to 14 significant digits when a number is
stored as a real number. (It prints the first 6 digits,
rounding off the last digit.)

This is the range of real numbers:

[-1 * 10 ** -64, -1 * 10 ** 63], or
[l * 10 ** -64, 1 * 10 ** 63]

A real number requires 8 bytes of storage. The first byte is
for the exponent. Two digits of the number are stored in each
of the next 7 bytes.

--------- llad1elhaeli---------

PAGE 3 - 10

MODEL I/III COMPILER BASIC BASIC CONCEP'rS

------------TRS-eo@ ___________ __

Note: An explanation of the way BASIC stores real numbers, in
Binary Coded Decimal format, is in the Programmers Information
Section.

String Data

Strings (sequences of characters) are useful for storing
non-numeric information such as names, addresses, text, etc. You
may store any ASCII characters as a string. (A list of ASCII
characters is in the Appendix.)

For example, the data constant:

Jack Brown, Age 38

can be stored as a string of 18 characters. Each character (and
blank) in the string is stored as an ASCII code, requiring one
byte of storage. BASIC would store the above string constant
internally as:

Hex 4A 61 63 6B 20 42 72 6F 77 6E 2C 20 41 67 65 20 33 38 Code

ASCII J a c k
Char-
acter

B r o w n A g e 3 8

A string can be up to 255 characters long. Strings with length
zero are called "null" or "empty".

--------1tad1elhaell--------

MODEL I/III COMPILER BASIC BASIC CONCEPTS

-------------TRS-BO@ ___________ _

HOW BASIC CLASSIFIES CONSTANTS

When BASIC encounters a data constant in a statement, it must
determine the type of the constant (string, integer, or real).
These are the rules it uses:

Rule 1

If the value is enclosed in qouble-quotes, it is a string. For
example:

"YES"
"3331 Waverly Way"
"1234567890"

the values in quotes are automatically classified as strings.

Rule 2

If the value has a & mark in front of it, it is a hexadecimal
number. For example:

&O &7FCO &FFFF

are all hexadecimal numbers. Hexadecimal numbers are actually
stored as integers. You may use hexadecimal numbers in special
cases such as in the EXT statement.

Rule 3

If the value is not in quotes, it is a number.
this rule is during data input by an operator.
INPUT, INKEY$, and INPUT$.)

For example:

123001
1
-7.3214E+6

are all numeric data.

(An exception to
See INPUT, LINE

--------- llad10/haeli---------

PAGE 3 - 12

MODEL I/III COMPILER BASIC BASIC CONCEPTS

------------TRS-80@ ------------

Rule 4

Whole numbers in the range of -32768 to 32767 are integerso For
example:

12350
-12
10012

are integer constantso

Rule 5

If the number contains a decimal point or is outside the integer
range defined in rule 3 above, it is real. Also, if it contains
the letter E, it is real.

Note: Exponents are printed with the letter Eo The E indicates
that the value printed multiplied by the specified power of 10
represents the data stored. For example:

1. E+7

Represents the value 10000000, or 1 * 10 ** 7.

1. E-8

Represents the value .00000001 or 1 * 10 ** -8.

----------- llaflle lhaeli-----------
PAGE 3 - 13

MODEL I/III COMPILER BASIC BASIC CONCEPTS

-------------TRs-ao@ ___________ _

HOW BASIC CLASSIFIES VARIABLES

When BASIC encounters a variable name in the program, it
classifies it as either a string, integer or real number. It
will only classify the variable name once in the program. You
cannot get BASIC to re-classify a particular variable name.

These are the rules BASIC uses to classify variables:

Rule 1

Unless BASIC encounters a definition statement (described in
rule 2 below) or a type declaration tag (described in rule 3
below), BASIC classifies all variable names as real number types
and stores them in 8 bytes. For example:

AB AMOUNT XY L

are all real number variables initially. If this is the first
line of your program:

LP= 1.2

BASIC will classify LP as a real number variable.

Rule 2

If BASIC encounters a definition statement, BASIC will classify
variables according to the instructions of that statement.
There are three definition statements:

STRING
INTEGER
REAL

The STRING Statement

STRING instructs BASIC to classify all variable names as string.
For example:

STRING

----------1tad1elhaell---------

PAGE 3 - 14

MODEL I/III COMPILER BASIC BASIC CONCEP'rS

@) ---------------

instructs BASIC to classify all variable names as string.

STRING L

instructs BASIC to classify only those variable names beginning
with the letter Las string.

BASIC assumes that all string variables should be stored in 255
bytes. For example, even though this statement only assigns 4
bytes of data to L:

L = "JOHN 91

BASIC stores this data in 255 bytes. This causes L to contain
251 bytes of unused space.

255 bytes

To keep from wasting space in memory, you may specify the number
of bytes to use in storing variables. For example, in this
program:

10 STRING*4 L
20 L = "JOHN"
30 LAST = "ALEXANDER"

Land LAST will each contain 4 bytes of string data:

J

4 bytes 4 bytes

If you want to store all variable names beginning with the

®

PAGE 3 - 15

MODEL I/III COMPILER BASIC BASIC CONCEPTS

-------------TRS-eo@ ___________ _

letter Las string variables except for the variable LAST, you
can use the DIM statement:

10 STRING*4 L
20 DIM LAST$9
30 L = 11 JOHN 11

40 LAS'I1 = "ALEXANDER"

This program stores the variable Lin 4 bytes and LAST in 9

bytes. I J : Q : H : N I
I 4 bytes I

L E X N D E R
9 bytes

Note: See DIM and STRING for more information.

The INTEGER Statement

INTEGER instructs BASIC to classify all variable names as
integer. For example:

INTEGER A

instructs BASIC to classify all variable names beginning with
the letter A as integers.

INTEGER

instructs BASIC to classify all variable names as integers.

In the present form of BASIC, all integer variables are stored
in 2 bytes.

The REAL Statement

REAL instructs BASIC to classify variable names in its letter
list as real numbers. For example, this program:

10 INTEGER

----------rtadaelllaell----------
PAGE 3 - 16

MODEL I/III COMPILER BASIC BASIC CONCEPTS

-------------TRs-ao@ ___________ _

20 REAL X-Z

instructs BASIC to classify all variable names, except for those
beginning with X, Y, or z, as integers. BASIC will classify
variable names beginning with X, Y, and Z as real.

In the present form of BASIC, all real number variables are
stored in eight bytes.

Illegal Use of Definition Statements

You cannot introduce a definition statement after an executable
statement. An executable statement is a statement other than a
definition statement. For example:

10 L = 10
20 STRING

produces an error, since STRING may not follow the executable
statement L = 10. However,

10 STRING
20 L = 10

is correct.

Rule 3

If a variable name has a type declaration tag following it,
BASIC will classify it as string or integer according to the
attributes of that tag:

$ String
% Integer
Real

(However, you cannot use tags to re-classify variable names
which BASIC has already classified previously in the program.)

For example, if the variable names S, MON, FINANCE, and CHART
have not yet been used in the program:

S$ MON$ FINANCE$ CHART$

will all be classified as string variable names, regardless of

---------- llad1elhaeli----------

PAGE 3 - 17

MODEL I/III COMPILER BASIC BASIC CONCEPTS
@ ______________,

what attributes have been assigned to the letters S, M, F, and
c ..

If the variable names I, LM, NUM, and COUNTER have not yet been
used:

I% LM% NUM% COUNTER%

will all be classified as integer variable names, regardless of
what attributes have been assigned to the letters I, L, N, and
Co

If the variables, LR, ER, MP235, and LITE have not yet been
used:

LR# ER# MP235# LITE#

will all be classified as real number variables, regardless of
what attributes have been assigned to the letters L, E, and M.

For example, in the program:

10 STRING A
20 AB= ueNEWn

The statement:

30 AB%= 1

produces an error, since AB has already been clasiified as a
string variable and cannot be re-classified. However:

30 AR%= 1

is accepted, since the type declaration tag(%) overrides the
STRING A statement.

Once you use a type declaration tag to classify variables, you
do not need to use the tag any more in the program. For
instance, after this statement is executed:

B$ = "DATA ID

You may refer to the string variable B$ as simply B .. B will
retain the classification of a string variable throughout the
rest of the program ..

(Even though you only need to use the tag when you introduce the
variable name, we suggest you use the tag every time you use the

®

PAGE 3 - 18

MODEL I/III COMPILER BASIC BASIC CONCEPTS
------------TRs-ao@ ___________ _

name. This makes the program more consistent and simplifies
editing.)

----------- lladlOlhaeli-----------

PAGE 3 - 19

MODEL I/III COMPILER BASIC BASIC CONCEPTS

HOW BASIC CONVERTS NUMERIC DATA

Often your program might ask BASIC to assign an integer data
constant to a real number variable, such as:

A = 5

or a real number constant to an integer variable, such as:

B% = 5.2

To do this, BASIC must first convert the data constant. This is
how it is done:

Real Number to Integer Type

BASIC truncates (ignores) the fractional part of the original
value .. The truncated value must be in the range of [-32768,
32767] ..

Examples

A%= -10.5

Assigns A% the value -10 ..

A% = 32767 .. 9

Assigns A% the value 32767 ..

A% = 2 .. 5E+3

Assigns A% the value 2500

A% = -123.45678901234

Assigns A% the value -123 ..

A% = 60000

Prints an integer overflow warning and assigns A% the value
32767. (32767 is the highest number that can be stored as an
integer) ..

PAGE 3 - 20

MODEL I/III COMPILER BASIC BASIC CONCEPTS
-------------TRs-so@ ___________ _

Integer to Real Number Type

In converting integers to real numbers, the converted value is
equal to the original value, but it consumes 4 times as much
storage space. (Integers are stored in 2 bytes and real numbers
in 8 bytes). For example:

A = 1

Stores 1.0000000000000 in A.

Illegal Conversions

BASIC cannot automatically convert numeric values to string, or
vice versa. For example, the statements:

A$= 1234
A%= "1234"

are illegal. (Use STR$ and VAL to accomplish such conversions).

-----------1tad1elhaeli----------
PAGE 3 - 21

MODEL I/III COMPILER BASIC BASIC CONCEPTS
-------------TRS-BO@) ___________ _

HOW BASIC PERFORMS OPERATIONS ON DATA

This section explains how you can instruct BASIC to manipulate
or test your data. The two means you have available are
operators and functions.

OPERATORS

An operator is a single symbol or word which signifies some
action to be taken on one or two specified values referred to as
operands ..

In general, an operator is used like this:

operand-1 operator operand-2
operand-1 and -2 can be expressions.

A few operations take only one operand, and are used like this:

operator operand
This is the form for a unary operation.

Examples:

6 + 2

The addition operator+ connects or relates its two operands, 6
and 2, to produce the result 8.

---------llad1e/haell---------

PAGE 3 - 22

MODEL I/III COMPILER BASIC BASIC CONCEPTS
-------------TRS-BO@ ___________ _

-5

The negation operator - acts on a single operand 5 to produce
the result negative 5.

Neither 6 + 2 or -5 can stand alone; they must be used in
statements to be meaningful to BASIC. For example:

A = 6 + 2
PRINT -5

Operators fall into three categories:

Numeric
String
Test

based on the kinds of operands they require and the results they
produce.

Numeric Operators

Numeric Operators are used in numeric expressions. Their
operands must always be numeric, and the result they produce is
one numeric data item.

In the descriptions below, we use the terms integer and real
operations. Integer operations involve two-byte operands, and
real operations involve eight-byte operands. Real operations
are slower, since they involve more bytes.

There are nine different numeric operators. Two of them, sign+
and sign-, are unary, that is, they have only one operand. A
sign operator has no effect on the precision of its operand.

For example, in the statement:

PRINT -77, +77

the sign operators - and+ produce the values negative 77 and
positive 77, respectively.

Note: When no sign operator appears in front of a numeric term,
+ is assumed.

The other numeric operators are all binary, that is, they all

----------rtad1elhaell----------
PAGE 3 - 23

MODEL I/III COMPILER BASIC BASIC CONCEPTS

-------------TRS-BO ®------------
take two operands. These operators are:

+

*
I

Addition
Subtraction
Multiplication
Division

!

**
MOD

Integer division (keyboard character <SHFT l>
Exponentiation
Modulus arithmetic

Addition

The+ operator is the symbol for addition. If both operands are
integers, BASIC will perform integer addition. Otherwise, BASIC
will convert any operands that are integers to real numbers, and
perform real number addition.

Note: See the section on How BASIC Converts Data (earlier in
this chapter) for an explanation on how integers are converted
to real numbers.

Examples:

PRINT 2 + 3

Integer addition.

PRINT 30000 + 10000

Integer addition. Since the upper limit for integers is 32767,
BASIC prints an overflow error warning.

PRINT 1.2 + 3

Real number addition. (The integer 3 is converted to a real
number.)

Subtraction

The - operator is the symbol for subtraction. As in addition,
both operands must be integers to perform integer subtraction.

Examples:

----------rtad1elllaell----------
PAGE 3 - 24

MODEL I/III COMPILER BASIC BASIC CONCEPTS

-------------TRS-so@ ___________ _

PRINT 33 - 11

Integer subtraction.

PRINT 12.345 - 11

Real number subtraction.

Multiplication

The* operator is the symbol for multiplication. Once again,
both operands must be integers to perform integer
multiplication.

Examples:

PRINT 33 * 11

Integer multiplication.

PRINT 32000 * 10

Integer multiplication. Since the upper limit for integers is
32767, BASIC prints an overflow error warning.

PRINT 12.345 * 11

Real number multiplication.

Division

The/ symbol indicates ordinary division. Division is always
with real numbers. If an operand is an integer, BASIC will
convert it to a real number to perform real number division.

Examples:

PRINT 3/4

Real number division.

PRINT 3 / 1.2

Real number division.

----------- lladae lhaeli----------
PAGE 3 - 25

MODEL I/III COMPILER BASIC BASIC CONCEPTS

-------------TRS-so@ ___________ _

Integer Division

The integer division operator! is input by pressing <SHIFT l>.
It converts its operands into integer type, then performs
integer division. In integer division, the remainder is
ignored, leaving an integer result. (If either operand is
outside the range [-32768,32767], an error will occur.)

For example:

PRINT 7 ! 3

prints the value 2, since 7 divided by 3 equals 2 remainder 1.

PRINT -7 ! 3

prints -2.

Exponentiation

The symbol** denotes exponentiation. It converts both its
operands to real numbers and returns a real number result.

For example:

PRINT 6 ** .3

prints 6 to the .3 power.

Modulus Arithmetic

The MOD ("modulo") operator allows you to do modulus arithmetic.
In modulus arithmetic, every number is converted to its
equivalent in a cyclical counting scheme. For example, a
24-hour clock indicates the hour in modulo 24. Although the
hour keeps incrementing, it is always expressed as a number from
0 to 23.

MOD requires two operands, for example:

A MOD B

Bis the modulus (the counting base) and A is the number to be

----------lladaelhaeli----------
PAGE 3 - 26

MODEL I/III COMPILER BASIC BASIC CONCEPTS

------------TRS-80@ ___________ _

converted.

(Expressed in mathematical terms, A MOD B returns the remainder
after whole-number division of A by B. In this sense, it is the
converse of !, which returns the whole number quotient and
ignores the remainder.)

MOD converts both operands to integer type before performing the
operation. If either operand is outside the range
[-32768,32767], an error will occur.

Examples:

PRINT 155 MOD 15

Prints 5, since 155!15 gives a whole number quotient of 10 with
remainder 5.

PRINT 79 MOD 12

Prints 7, since 79!12 equals 6 with remainder 7.

PRINT -79 MOD 12

Prints -7.

10 PRINT "TYPE IN AN ANGLE IN DEGREES"
20 INPUT A%
30 PRINT A; "="; A ! 90; " * 90 +"; A MOD 90

Input a positive angle greater than 90. Line 20 expresses the
angle as a multiple of 90 degrees plus a remainder.

String Operator

BASIC has a string operator (&) which allows you to concatenate
{link) two strings into one. This operator should be used as
part of a string expression. The operands are both strings and
the resulting value is one piece of string data.

The & operator links the string on the right of the & sign to
the string on the left. For example:

PRINT "CATS II & "LOVE II & "MICE"

prints:

----------- llad1elhaeli----------
PAGE 3 - 27

MODEL I/III COMPILER BASIC BASIC CONCEPTS

-------------TRS-BO@ ___________ _

CATS LOVE MICE

Since BASIC does not allow one string to be longer than 255
characters, you need to be careful that your resulting string is
not too long.

Test operators

You may use test operators in IF ... THEN statements to test a
certain kind of relationship between two or more expressions.
This allows you to build elaborate decision-making structures
into your programs. You may test either string or numeric
expressions.

Test~operators will return one of two results: True or False.
BASIC has two kinds of test operators: relational and logical.
The relational operators are<,>, and=; the logical operators
are AND, OR, XOR, and NOT.

Relational operators

Relational operators compare two numerical or two string
expressions. It then reports whether the comparison you set up
in your program is true or false.

Numerical comparisons

This is the meaning of the operators when you use them to
compare numeric expressions:

< Less than
> Greater than
= Equal to

<> or >< Not equal to
=< or <= Less than or
=> or >= Greater than

Examples of true relations:

1 < 2
2 <> 5
2 <= 5
2 <= 2

equal to
or equal to

---------ltadlO/llaell---------

PAGE 3 - 28

MODEL I/III COMPILER BASIC BASIC CONCEPTS
-------------TRS-BO@ ___________ _

5 > 2
7 = 7

Relational operators may only be used in an IF ... THEN statement.
For example

IF A= 1 THEN PRINT "CORRECT"

BASIC tests to see if A is equal to 1. If it is, BASIC prints
the message.

IF X > 100 THEN 500

If the relation is true; that is, if Xis larger than 100, then
control branches to line 500.

String Comparisons

The relational operators for string expressions are the same as
above, although their meanings are slightly different. Instead
of comparing numerical magnitudes, the operators compare their
alphabetical sequence. This allows you to sort string data:

<
>
=

>< or
<=
>=

<>

Precedes
Follows
Has the same precedence
Does not have the same precedence
Precedes or has the same precedence
Follows or has the same precedence

BASIC compares the string expressions on a character-by
character basis. When it finds a non-matching character, it
checks to see which character has the lower ASCII code. The
character with the lower ASCII code is the smaller (precedent)
of the two strings.

Note: The appendix contains a listing of ASCII codes for each
character.

Examples

"A" < "B"

The ASCII code for A is decimal 65; for Bit's 66.

"CODE 89 < "COOL II

The ASCII code for O is 79; for D it's 68.

®

PAGE 3 - 29

MODEL I/III COMPILER BASIC BASIC CONCEPTS

--------------TRS-so@ ___________ _

If while making the comparison, BASIC reaches the end of one
string before finding non-matching characters, the shorter
string is the precedent. For example:

"TRAIL 11 < "TRAILER"

Leading and trailing blanks are significant. For example:

81 A II < "A ..

ASCII for the space character is 32; for A it's 65.

"Z-80" < "Z-80a"

The string on the left is four characters long; the string on
the right is five.

As with the numerical comparisons, these string comparisons can
only be used in IF .•. THEN statements. These are examples of how
they might be used:

IF A$< B$ THEN 50

If string A$ alphabetically precedes string B$, then the program
branches to line 50.

IF R$ = "YES" THEN PRINT A$

If R$ equals YES then the message stored as A$ is printed.

Logical Operators

Logical operators make logical comparisons. Like relational
operators, they can only be used in IF/THEN statements and will
only return a result of true or false. Except for the NOT
operator, you may only use logical operators to compare two or
more relations. For example:

IF A= 1 OR C = 2 THEN PRINT X

The logical operator, OR, compares the two relations A=l and
C=2.

Logical operators do not perform bit manipulations. Use the
functions AND, OR, and XOR for that purpose.

----------rlad1elhaeli----------

PAGE 3 - 30

MODEL I/III COMPILER BASIC BASIC CONCEPTS

This is how to use the logical operators:

AND

If both relations are true, then AND returns a logical true.
Otherwise, it returns a logical falseo For example:

IF A= BAND B < 0 THEN 100

OR

If either of the relations is true, or both are true, OR returns
a logical true. Otherwise it returns a logical false. For
example:

IF GAME= OVER OR TIME>= LATE THEN 500

XOR ("Exclusive OR n)

Only when ONE of the relations is true (but not both) does XOR
return a logical true. Otherwise it returns a logical false.
For example:

IF A$= "YES" XOR B$ = "YES" THEN PRINT noNLY ONE YES"

NOT

NOT is a unary operator, which means it only acts on one
operand. The operand, like all the ones above, is a relation.
When the relation is true, NOT returns a logical false. When it
is false, NOT returns a logical true. For example:

IF NOT(A$ < "M") THEN PRINT A$; "DOES NOT PRECEDE M"

Hierarchy of Operators

When your expressions have multiple operators BASIC performs the
operations according to a well-defined hierarchy so that results
are always predictable.

Parentheses

---------11 IO
®

PAGE 3 - 31

MODEL I/III COMPILER BASIC BASIC CONCEPTS

-------------TRS-BO ~---------------

When a complex expression includes parentheses, BASIC always
evaluates the expressions inside the parentheses before
evaluating the rest of the expression. For example, the
expression:

8 - (3-2)

is evaluated like this:

3 - 2 = 1
8 - 1 = 7

With nested parentheses, BASIC starts evaluating the innermost
level first and works outward. For example:

4 * (2 - (3 - 4))

is evaluated like this:

3 - 4 = -1
2 - (-1) = 3

4 * 3 = 12

Order of Operations

When evaluating a sequence of operations on the same level of
parenthesis, BASIC uses a hierachy to determine what operation
to do first.

The two listings below show the hierarchy BASIC uses. Operators
are shown in decreasing order of precedence. Operators listed
in the same entry in the table have the same precedence and are
executed as encountered FROM LEFT TO RIGHT:

Numerical operations:

**
+, - (unary sign operations -- not addition or

subtraction)
*, I

MOD
+, -
<, >, =, <=, >=, <>
NOT
AND
OR

---------- ltadaelhaeli----------
PAGE 3 - 32

MODEL I/III COMPILER BASIC BASIC CONCEPTS

-------------TRS-BO@ ------------

XOR

String operations:

&
<, >, =, <=, >=, <>
NOT
AND
OR
XOR

For example, in the line:

X * X + 5**2.8

\

BASIC will find the value of 5 to the 2.8 power. Next, it will
multiply X * X, and finally add this value to the value of 5 to
the 2.8. If you want BASIC to perform the indicated operations
in a different order, you must add parentheses. For example:

X * (X + 5**2.8)

or

X * (X + 5)**2.8

Here's another example:

IF X = 0 ORY> 0 AND Z = 1 THEN 255

The relational operators= and> have the highest precedence, so
BASIC performs them first, one after the next, from left to
right. Then the logical operations are performed. AND has a
higher precedence than OR, so BASIC performs the AND operation
before OR.

If the above line looks confusing because you can't remember
which operator is precedent over which, then you can use
parentheses to make the sequence obvious:

IF X = 0 OR ((Y>0) AND (Z=l)) THEN 255

-----------llad1elhaeli----------
PAGE 3 - 33

MODEL I/III COMPILER BASIC BASIC CONCEPTS @ _____________ _

FUNCrrIONS

A function is a built n sequence of operations which BASIC will
perform on data. A function is actually a subroutine which
usually returns a data itemo The BASIC Compiler's functions
save you from having to write a BASIC routine, and they operate
faster than a BASIC routine wouldo

A function consists of a keyword followed by the data that you
specifyo This data is always enclosed in parentheses and, if
more than 1 data item is required, separated by commas.

If the data required is termed 'number' you may insert any
numerical expression. If it is termed 'string' you may insert
either a string constant or a string variable.

Examples:

SQR(A + 6)

Tells BASIC to compute the square root of A+ 6.

SEG$ (A$, 3, 2)

Tells BASIC to return a substring of the string A$, starting
with the third character, with a length of 2.

Functions cannot stand alone in a BASIC program. Instead they
are used in the same way you use expressions -- as the data in a
statement ..

For example

A= SQR(7)

Assigns A the data returned as the square root of 7.

PRINT SEG$(A$, 3, 2)

Prints the substring of A$ starting at the third character and
two characters long.

If the function returns numeric data, it is a numeric function
and may be used in a numeric expression. If it returns string
data, it is a string function and may be used in a string
expression.

---------llad1elhaell----------
PAGE 3 - 34

MODEL I/III COMPILER BASIC BASIC CONCEPTS
------------TRS-BO@ ___________ _

SYNTAX OF EXPRESSIONS

Understanding the syntax of expressions will help you put
together powerful statements -- instead of using many short
ones ..

As we have stated before, an expression is actually data. This
is because once BASIC performs all the operations, it returns
one data item. An expression may be either a string or numeric
expression. It may be composed of:

Constants
Variables
Operators
Functions

Expressions may be either simple or complex:

A SIMPLE EXPRESSION consists of a single TERM: a constant,
variable or function. If it is a numeric term, it may be
preceded by an optional+ or - sign.

For example:

+A 3.3 -5 SQR(8)

are all simple numeric expressions, since they only consist of
one numeric term.

A$ STRING$(20, A$) "WORD" "M II

are all simple string expressions since they only consist of one
string term.

-----------1tad1elhaeli----------
PAGE 3 - 35

MODEL I/III COMPILER BASIC BASIC CONCEPTS

Here's how a simple expression or a term is formed:

CONSTANT

VARIABLE

FUNCTION

A COMPLEX EXPRESSION consists of two or more terms (simple
expressions) combined by operators. For example:

A-1 X+3 .. 2-Y A/ 3 * (LOG (Y)) ABS(B) + LOG(2)

are all examples of complex numeric expressions.

A$ & B$ "Z 18 & Z$ STRING$ (10 , "A") & 98 M"

are all examples of complex string expressionse

This is how a complex numeric expression is formed:

TERM

----------rtad1elhaell----------
PAGE 3 - 36

MODEL I/III COMPILER BASIC BASIC CONCEPTS
-------------TRS-BO@ ___________ _

This is how a complex string expression is formed:

Most FUNCTIONS, except functions returning system information,
require that you input either or both of the following kinds of
data:

one or more numeric expressions
one or more string constants or string variables

This is how a function is formed:

If the data returned is a number, the function may be used as a
term in a numeric expression. If the data is a string, the
function may be used as a term in a string expression.

----------- lladaelhaeli----------
PAGE 3 - 37

**
*
*
*
*
*

Chapter 4

BUILDING DATA FILES

*
*
*
*
*

**

---------ltadaelhaeli---------

MODEL I/III COMPILER BASIC BUILDING DATA FILES

------------- TRS-BO@) ___________ _

INTRODUCTION

This chapter explains how to write a BASIC program which will
store data files on Model I/III diskettes. The Overview
explains the different methods,you can use to store data. The
next sections run through the procedures to use in building the
various types of data files.

OUTLINE FOR CHAPTER 4
BUILDING DATA FILES

I. Overview
A. Introduction to Data Files
B. Types of Records

1. Fixed Length Records
2. Variable Length Records

C. Ways of Accessing Records
1. Sequential Access
2. Direct Access
3. Indexed Access (ISAM)

D. Input/Output Methods
1. Stream Input/Output
2. Formatted Input/Output
3. Binary Input/Output

II. Building a Sequential Access File
A. Using Stream Input/Output
B. Using Formatted Input/O~tput
c. Using Binary Input/Output

III. Building a Direct Access File
A. Using Formatted Input/Output
B. Using Stream Input/Output
C. Using Binary Input/Output

IV. Building an Indexed Access File

-----------1tad1elllaeli----------
PAGE 4 - 1

MODEL I/III COMPILER BASIC BUILDING DATA FILES

-----------TRS-BO®-----------

OVERVIEW

INTRODUCTION TO DATA FILES

Data is stored on diskette in a data file. A data file is made
up of records. Each record may contain from one to 256 bytes.
Normally, one byte can hold one character of data.

For example, if the data file is a mailing list, each record
could contain the data for one address. If the longest address
contains 50 characters of data, the record would consume a
little more than 50 bytes of space on the diskette.

A data file may contain as many records as you want and have
room for. The system allocates space for each new record as you
build the file. If you want to, you have the option of
allocating space for your file in advance. To do this, use the
TRSDOS "CREATE"' command. (See the Model I/III Disk Operating
System.)

This overview covers:

1. the types of records you can build
2. the different ways you can access these records,
3. the methods you can use to input and output data to

these records.

--------lladaelhaeli--------

PAGE 4 - 2

MODEL I/III COMPILER BASIC BUILDING DATA FILES

-----------TRS-ao@ __________ _

TYPES OF RECORDS

A data file may contain records which are fixed or varied in
length:

Fixed Length Records (FLRs)

In a file containing FLRs, each record is the same length. This
length can be from one to 256 bytes and is set the first time
you open the file for use. Once set, the length may not be
changed unless you are over-writing the file with new data.

This is a picture of an FLR file containing three records:

1

RECORD 1 RECORD 2 RECORD 3
1--------------
The advantage of using FLRs 1s that the position of each record
can be easily calculated. For this reason, you can immediately
access any record in the file. For instance, to access the
contents of record 3, you do not have to read the contents of
the first two records.

The disadvantages are obvious. FLRs often contain a lot of
empty space. Also, the record length must be determined in
advance.

Variable Length Records (VLRs)

In a file containing VLRs, each record may vary in length. Here
is a picture of a VLR file containing three records:

RECORD 1 RECORD 2 REC 3

Unlike FLRs, only the position of the first record and the end
of the file can be located. To locate any other record, you
must read each record in sequence, beginning with the first

----------llatt1elhaeli----------
PAGE 4 - 3

MODEL I/III COMPILER BASIC BUILDING DATA FILES

-------------TRS-eo@ ___________ _

record, until you locate the record you want.

The advantage of using VLRs is that it is an easier and more
flexible way of building a file. Virtually no space is wasted
in a VLR file; each new record begins where the data in the last
record ended.

---------- llad1elhaeli----------
PAGE 4 - 4

MODEL I/III COMPILER BASIC BUILDING DATA FILES
@ ______________ _

WAYS OF ACCESSING RECORDS

There are three ways you may use to access a record in a file:

1. sequential access
2 .. direct access
3. indexed access

In sequential access, you must access each record sequentially.
With direct access, you can access a record directly by
referencing its record number. Indexed access allows you to
access a record directly by referencing a key name which is
indexed alphabetically.

Sequential Access

A sequential access file is normally made up of VLRs, although
it may also be made up of FLRs. Since it is equipped for VLRs,
only the first record and the end of the file can be directly
accessed. Every other record must be accessed in sequence:
record 1, record 2, record 3, , the last record.

Using sequential access gives you the same advantages and
disadvantages of using VLRs. It is a compact, easy, and
flexible type of file to build, but it is time consuming to
access individual records.

For instance, to update the file, you must read in every record,
make any changes, and then write out each record to a new file
on the diskette.

Some good uses for sequential access are:

1. Files which do not need to be accessed often, such as
prior bookkeeping records.

2. Files which are only meant to be accessed in sequence,
such as a file containing text information.

3. Files with widely varying record lengths.

4. Files where the maximum record length cannot be
determined in advance.

®

PAGE 4 - 5

MODEL I/III COMPILER BASIC BUILDING DATA FILES

Storage Format

In a variable length sequential access file, the first byte in
each record gives the actual length of the record. This equals
the amount of data plus one. Here is a picture of a record in
a sequential access file:

7 R E C 0 R D

In a fixed length sequential access file there is no count.

Direct Access

A direct access file (sometimes called random access) may only
contain FLRs and has the advantages and disadvantages of FLRs.
You assign each record a number when writing the record to the
diskette. You may then use these record numbers to read or
write to any record in the file.

Building a direct access file involves more planning than a
sequential access file, since the record length must be
determined in advance. To determine it, you need to calculate
the maximum amount of data in a record, and how much space this
record will consume on the diskette.

Some good uses for direct access are:

1. Files which contain standard sized records such as a
mailing liste

2. Files which need to be continually updated such as
inventory data.

Storage Format

This is a picture of a record in a direct access file which has
a fixed length of 12 bytes of data for each record:

PAGE 4 - 6

MODEL I/III COMPILER BASIC BUILDING DATA FILES

6 0 R E C 0 R D

The first byte of the record contains the actual number of bytes
of data in the record. The second byte is not used in BASIC and
is always the number 0.

The next bytes are for the actual data in the record. Since
this record only has six bytes of data and the fixed record
length has been set at 12 bytes, it contains six empty bytes.

Sometimes you might have a record containing no data in it,
either because the record was deleted or no data was ever
assigned to it. For example, say you had data in record 1 and
record 3, but no data in record 2. Record 2 would still consume
the same amount of space on disk as all the other records. This
is what record 2 would look like:

0 0

Often, after continually updating a direct access file, the file
will contain a lot of deleted records and hence, a lot of empty
space. To maintain this kind of file, you might periodically
need to run a program which "packs" the data by assigning all
the records new record numbers; thereby eliminating the space
being consumed by deleted records.

Indexed Access (ISAM)

Like direct access, an indexed access file may only contain FLRs
and offers the advantages and disadvantages of FLRs. Indexed
files differ in the means of accessing the .record. Rather than
being accessed by a record number, the record is accessed by a
key which you assign to the record when writing it to the
diskette. This key may be any string.

For example, each record in a payroll file could be assigned the
person's last name as a key rather than a record number. This
way you can use the person's last name, rather than looking up
the record number, as a way of immediately accessing his or her

PAGE 4 - 7

MODEL I/III COMPILER BASIC BUILDING DATA FILES

-------------TRS-BO@) ___________ _

record.

Indexed files are the easiest to operate and maintain.
Operators can more easily use keys containing meaningful data
than record numbers to access individual records in the file.

Maintaining an indexed file which has been updated frequently is
also the easiest. Since a deleted record does not consume any
space on the disk, it is not necessary to periodically run
programs to pack all the records.

The disadvantage of indexed files is the amount of space they
consume on the diskette. The overhead of the key index takes
extra space. To build a file which uses disk space efficiently,
you must carefully calculate the record length, key length, and
number of records in the file. (The storage format is discussed
in the Programmers Information Section.)

Some good uses for indexed access are:

1. Files which will be handled by many operators, such as
checking account data at a bank.

2. Files which will continually have records inserted and
deleted.

--------ltadae/haeli--------
PAGE 4 - 8

MODEL I/III COMPILER BASIC BUILDING DATA FILES
------------- TRS-ao@ ___________ _

2

SEQUENTIAL ACCESS

RECORD 2

DIRECT ACCESS

3

RECORD 2

INDEXED ACCESS

AB C ,. X Y Z

RECORD 2

4

------------ llad1e/llaell----------
PAGE 4 - 9

MODEL I/III COMPILER BASIC BUILDING DATA FILES

INPUT/OUTPUT METHODS

After deciding which type of records you will use and how to
access the records, you need to decide how to input and output
data to the records.

In choosing an input/output method, there are two things to
consider:

1. how the data will be stored in the record
2. how the data will be fielded in the record

Fielding is a way of dividing data into different categories.
For example, you might divide each record in a mailing list into
five fields: (1) name, (2) address, (3) city, (4) state, (5)
zip code. A record may contain as many data fields as you can
fit in the record.

BASIC offers three methods of inputting and outputting data to a
record:

1 .. Stream
2. Formatted
3.. Binary

Each of these methods may be used with any type of records and
with any type of access method.

The stream and formatted methods store each character of data in
its ASCII format. This means each character consumes one byte
of space on the diskette.

The binary method stores numeric data the same way it is stored
in memory: integers in two bytes and real numbers in a maximum
of nine bytes. For instance, the integer -23456 would consume
six bytes of disk space with stream or formatted input/output,
but only two bytes with binary.

The stream method separates each field by a comma. The
formatted method formats the fields according to your
specifications. The binary methods separates the fields by a
length byte, or, if it is an integer, no field separator is
necessary.

Note: In the following illustrations of stored records, only
the data portion is shown. The beginning of the record would be
in the format of the access method that is being used

--------ltadle Ii-------------
PAGE 4 - 10

MODEL I/III COMPILER BASIC BUILDING DATA FILES

{sequential, direct, or indexed).

Stream Input/Output

When data is input and output in a stream, the PRINT statement
outputs the data to the diskette, anq the INPUT statement inputs
data from the diskette. It is called the stream method because
the length and format for the fields can differ with each
record.

For example, if you were outputting records with three fields of
data:

1 .. first name
2. last name
3. ID number

And this was the data for the first two records:

record l
record 2

First name
(FIRST$)

J
JANE

Last name
(LAST$)

DAY
MILLER

ID
(ID)

42
2

You would input the data simply by using a comma to delimit the
end of one field and the beginning of the next field:

FIRST$, LAST$, ID

The data for these two records would be stored on the diskette
in a stream with a comma separating each field

J D A y 4 2

1---1---1---1---1---
1-~-1-~-1-~-1-~-1-~- M I

---1---
-~-1-~- E

---1---

-~-1-~- 2

Notice that each new field of data requires one extra byte of
disk space for the comma.

-----------rtad1elhaell----------
PAGE 4 - 11

MODEL I/III COMPILER BASIC BUILDING DATA FILES

Also note that a numeric field with a positive number requires
one extra byte for a leading blank before the numbero However
if you output the ID as a string (ID$):

FIRST$, LAST$, ID$

no leading blank would be required in storing the number:

1---1--- ---1---1

1-~-1-~-
D A y

-~-1-=-1
Stream input/output is best suited for VLRs, since the fields in
each record may differ in lengtho However, the stream method
may also be used with FLRso

Formatted Input/Output

In formatted input/output, the INPUT USING and PRINT USING
statements input and output data to the disketteo This allows
you to use the image to control exactly how and where each field
of data will be stored on the disko

For example, you could output the same data as above using the
formatted method with this image:

<###<####<#

to format four characters for the first field, five for the
second, and two for the third, with each field left justified.
This is how the data would be stored:

J

1---

1-~- A

D

---1---1--
N I E I M --- --- ---

A y 4 2

---1---1---
I L L _E_/_2_1---

-----------rt 1e/haell----------
PAGE 4 - 12

MODEL I/III COMPILER BASIC BUILDING DATA FILES

-------------TRs-ao@ ___________ _

Notice how each field of data is formatted to match the image
line. Since the second field only allows for five left
justified characters, the R in MILLER is truncated (deleted).

This is a good method to use when you need to be able to access
any character of data in the record. For example, this method
would make it easy to change the second character in each ID
number.

Also, this is a good way to save disk space. If each field
contains the same amount of data, the fields can be packed
together in the record with no commas separating them.

Binary Input/Output

In binary input/output, the READ and WRITE statements input and
output data to the diskette.

Numeric Data

Numeric data is stored much like it is in memory:

integers are stored in two bytes, two's complement
notation.

real numbers are stored in binary coded decimal
format. This requires a maximum of nine bytes
(the length byte plus the eight bytes for the
number -- insignificant bytes are truncated.)

For an explanation of both of these storage formats, see the
Programmers Information Section.

Integers must be whole numbers in the range of -32768 to 32767.
For example, the integers 22, 333, 4444 would be stored as
follows:

---1--- ---1--- ---1---
6 22 333 4444

---1--- ---1--- ---1---

The first byte tells how many bytes of data are in the three
following fields. Notice how each integer requires two bytes of
storage. No extra bytes are required to separate each field.

--------lladaelllaeli--------
PAGE 4 - 13

MODEL I/III COMPILER BASIC BUILDING DATA FILES

The real numbers 2000 and 3333 would be stored in this format:

7 2 44 2 3 44 33 33

FIELD 1 FIELD 2
2000 3333

The field for the number 2000 consumes three bytes. The first
byte, 2, tells the length of the field. The second byte, 44, is
the exponent byte. The third byte, 2, contains the one
significant digit in the number.

The next field for the number 3333 begins with the length byte,
3, which says that this field is four bytes longo The second
byte, 44, is the exponent byte. The third and forth bytes
contain the four significant digits in the number, 3333.

For more information on this, refer to the Programmers
Information Section.

String Data

String data is stored in ASCII format with one byte per
character plus a length byte to give the length of the string
field.

The string data, "BINARY" and FILE°' would be stored in a record
in this form:

12 6 B I N A R y 4 F I L E

Notice that each field contains a leading length byte.

Binary input/output is the most concise way to store a file
containing largely numeric data. For example, a file containing
sales data or accounting data would be best stored using the
binary method.

----------1tad1elhaell----------
PAGE 4 - 14

MODEL I/III COMPILER BASIC BUILDING DATA FILES

-------------TRS-so@ ___________ _

BUILDING A SEQUENTIAL ACCESS FILE

As we discussed in the overview of this chapter, you have a
choice of three methods you may use in building a sequential
access file:

1. Stream method
2. Formatted method
3. Binary method

We will take you through the steps of building a sequential
access data file using each of these methods. You will probably
find it helpful, when going through these steps, to read about
each statement we use. A write-up of each statement is in the
Keywords Chapter of this manual.

SEQUENTIAL ACCESS
USING STREAM INPUT/OUTPUT

The stream method is the most common way of building a
sequential access file, since you do not have to format the
length of the records in advance. We will show you how to use
this method to:

1. build the file
2. read the file
3. add to the file

----------lladNtlllaeli----------
PAGE 4 - 15

MODEL I/III COMPILER BASIC BUILDING DATA FILES
-------------TRS-BO@ ___________ _

4. update the file

Building the File (Output to the File)

When building the file, you need to write a program that will do
these four things:

1. Open the disk file with OPEN.
2. Print a data record to the disk file with PRINT#.
3. Repeat step 2 until your program has printed all the

records to the disk file, and then
4. Close the file with CLOSE.

Here is a sample program, along with a sample run of the
program, which builds the file using these four steps:

10 REM *** DEMO OF STREAM OUTPUT TO A SEQUENTIAL FILE***
20 f~EM
:m OPEN tH, 11 ITEM/DAT 11

, MODE=::W, TYPE==S
40 PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM"
50 INPUT NO$, NAME$, DES$
60 PRINT #1; NO$, NAME$, DES$
70 PRINT "IS THERE ANOTHER ITEM (Y/N)? 11

80 INPUT ANSWER$
90 IF ANSWER~; <> 11 N 11 THEN 40 EL.SE CLOSE !ti

*f~UN

INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM
? 111
? PAPER
? LEGAL PAD 8 1/2 X 11 50 SHEETS
IS THERE AN~THER ITEM (Y/N)?
? y
INPUT (1) ITEM NO. (2) NAME C:3) DESCRIPTION OF ITEM

? PEN
? BLUE INK BALL POINT MEDIUM INK
IS THERE ANOTHER ITEM (Y/N)?
? N

Line 30 opens the file with the OPEN statement. (See OPEN):
- it references it as file unit #1 (You may have several

----------1tad10111aeli-----------
PAGE 4 - 16

MODEL I/III COMPILER BASIC BUILDING DATA FILES

------------- TRS-eo@ ___________ _

files open at the same time as demonstrated later in this
section.)

- it names it with the file specification of ITEM/DAT
- it sets the MODE to W since we are writing data to the

file.
- it sets the TYPE to S for sequential access

Line 60 prints the data for one record to the file. This record
has three fields: NO$, NAME$ and DES$. Notice that the PRINT#
statement can only print one record to the disk file each time
it is executed (See PRINT to a disk file).

Line 90 sets up a loop to continue printing as many records as
you want to the disk file, and ...

When all the records are printed on the disk, line 90 closes the
file.

Reading the File (Input from the File)

To read all the data records you have put in your file, you need
to have your program do these five things:

1. Open the disk file with OPEN.
2. Read in a data record with INPUT#.
3. Use EOF to see if you have reached the end of the file

yet ..
4. Repeat steps 2 and 3 until you have read in all the

records, and then
5. When you have reached the end of the file, close it

with CLOSE.

Here is a program, along with a sample run, which uses these
steps to read in the file which was built above:

tttj REM
20 REM

*** DEMO OF STREAM INPUT FROM A SEQUENTIAL FILE***

30 OPEN #1, "ITEM/DAT", MODE=R, TYPE=S
40 INPUT #1; NO$, NAMES, DES$
50 IF EOF(#1) <> 0 THEN 90
60 PF~ I NT ~ p1:~ I NT II ITEM NUMBER :::: " ; NO$, 11 NAME ~- 11

; NAME$
70 PRINT "DESCRIPTION OF THE ITEM: "; DES$
B0 GOTO 40
90 CLOSE #1

----------lladaelhaeli----------
PAGE 4 - 17

MODEL I/III COMPILER BASIC BUILDING DATA FILES

------------TRS-BO@ ___________ _

ITEM NUMBER= 111
DESCRIPTION OF THE ITEM

ITEM NUMBER= 222
DESCRIPTION OF THE ITEM

~HOP LINE 90
*

Line 30 opens the file:

NAME =: PAPER
LEGAL PAD 8 1/2 X 11 50 SHEETS

NAME =:: PEN
BLUE INK BALL POINT MEDIUM INK

- again, it is file unit #1
- it names ITEM/DAT as the file to be opened (the file

that was created above)
- it sets the MODE to R since we are reading data from the

file
- it sets the TYPE to S for sequential

Line 40 causes your computer to INPUT (read) one data record
from the disk file. It reads all three fields of the record.
The first field is assigned to NO$, the second to NAME$, and the
third to DES$.

Line 50 checks to see if you have reached the end of the file
yet. If you have, it jumps to line 90 where the file is closed.

Line 80 sends the program back to INPUT or read another record,
and

Line 90 closes the file.

Adding to the file

Should you decide at a later date that you want to add some more
records to your file, you would follow a procedure almost
identical to the one discussed above in "Building the File".
The only difference is in the OPEN statement. Instead of
setting the MODE to W (write), set it to E (extend).

Here is a sample program which extends the file built above

---------- rlad1elhaeli----------

PAGE 4 - 18

MODEL I/III COMPILER BASIC BUILDING DATA FILES

named ITEM/DATo

10 REM
20 REM

*** DEMO OF ADDING TO A SEQUENTIAL FILE***

30 OPEN #1, "ITEM/DAT", MODE=E, TYPE=S
40 PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM"
50 INPUT NOS, NAMES, DESS
60 PRINT #1; NOS, NAMES, DES$
70 PRINT 11 IS THERE ANOTHER ITEM (Y/N)? 11

80 INPUT ANSWERS
90 IF ANSWER$<> 11 N11 THEN 40 ELSE CLOSE #1

*RUN
INPUT (1) ITEM NO.. (2) NAME (3) DES CR I PT I ON OF ITEM
? 333
? TYPEWRITER
? TAN ELECTRIC PORTABLE SELECTRIC
IS THERE ANOTHER ITEM <YIN)?
? N
STOP LINE 90

Updating the File

As we discussed in the overview of this chapter, updating a
sequential access file is a time consuming process. These are
the steps you need to follow:

1 ..
2 0

records
3 0

4 ..
5 ..
6 ..

file #1,
7 ..
8 ..
9 ..

Open the file you want to update (file #1) with OPEN.
Open a second file with OPEN to write your updated

to (file #2) ..
Read in a data record with INPUT# from file #1.
Use EOF to see if you have reached the end of file #1.
Use PRINT# to print the updated record to file #2 ..
Repeat steps 3, 4, and 5 until you reach the end of
and then
Close ~ile #1 with CLOSE.
Kill file #1.
Close file #2 with CLOSE.

Here is a sample program which updates a sequential access file
using these nine steps:

10 REM *** DEMO OF UPDATING A SEQUENTIAL FILE***
20 REM
30 OPEN #1, "ITEM/DAT", MODE=R, TYPE=S
40 OPEN #2, "NEWITEM/DAT", MODE=W, TYPE=S
50 INPUT #1; NOS, NAMES, DESS
60 IF EOF(#1) = -1 THEN 160
70 PRINT: PRINT "ITEM NUMBER= ";NOS, "NAME= ";NAMES

®

PAGE 4 - 19

MODEL I/III COMPILER BASIC BUILDING DATA FILES

80 PRINT "DESCRIPTION ~F THE ITEM: ";DES$
90 PRINT: PRINT "DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)";

100 INPUT ANSWER$
110 IF ANSWER$= "N" THEN 140
120 PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM"
130 INPUT NO$, NAME$, DESS
140 PRINT #2; NO$, NAMES, DES$
150 GOTO 50
160 CLOSE t-H
170 KILL "ITEM/DAT"
180 CLOSE #2

ITEM NUMBER - 111 NAME= PAPER
DESCRIPTION OF THE ITEM= LEGAL PAD 8 1/2 X 11 50 SHEETS

no YOU WANT TO CHANGE THif3 INFORMATION (Y/N)? N

ITEM NUMBER ·-- :~:::~::::.::: NAME PEN
DE:SCR I PT I ON OF THE ITEM : BLUE INK BALL. POINT MEDIUM

DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)? Y
INPUT (l) ITEM NO" (2) NAME (3) DESCRIPTION OF ITEM"

? PEN
? BLACK INK BALL POINT FINE LINE

ITEM NUMBER - 333 NAME - TYPEWRITER

IN~,

DESCRIPTION OF THE ITEM: TAN ELECTRIC PORTABLE SELECTRIC

DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)? N

Line 30 opens the file to be updated:
- it references the file as file #1
- it names ITEM/DAT as the file to be opened
- it sets the MODE to R, since we will be reading data

records from the file
- it sets the TYPE to S

Line 40 opens the second file which will contain the updated
information:

- it references it as file #2
- it names this new file "NEWITEM/DAT"
- it sets the MODE to W, since we will be writing the

updated data records to this file
- it sets the TYPE to S

---------- rtad1e lhaeli-----------

PAGE 4 - 20

MODEL I/III COMPILER BASIC BUILDING DATA FILES

Line 50 INPUTs (reads) one data record from file #1.

Line 60 checks to see if we have reached the end of file #1. If
so, it sends program control to lines 160-180 where the two
files are closed.

Line 140 PRINTS (writes) the updated record to file #2.

Line 150 sends the program back to read the next record, update
it, and write the updated record to disk.

Line 160 closes file #1.

Line 170 kills file #1 since this file contains the old
out-of-date information.

Line 180 closes the new file.

Notice that after running this program, you have created a new
file named NEWITEM/DAT which contains your information.

------------ rt aelllaeli------------
PAGE 4 - 21

MODEL I/III COMPILER BASIC BUILDING DATA FILES

SEQUENTIAL ACCESS
USING FORMATTED INPUT/OUTPUT

Since the formatted method requires that you set the length of
records in advance, it does not allow you to take advantage of
the flexible record length that sequential access offers.
However, you are still able to take advantage of the compactness
of a sequential access file.

The steps for formatted input/output are identical to sequential
input/output, except you need to replace PRINT# with PRINT
USING# and INPUT# with INPUT USING#.

Sample programs:

10 REM
20 REM

*** DEMO OF FORMATTED OUTPUT TO A SEQUENTIAL FILE***

30 OPEN #1, 11 ITEM/DAT", MODE=-W, TYPE::::S
L~0 PRINT 11 INPUT (1) ITEM NO .. (2) NAME C3) DESCRIPTION OF ITEM"
50 INPUT NO$, NAMES, DES$
60 PRINT USING #1; 200, NOS, NAME$, DES$
70 PRINT 11 IS THERE ANOTHER ITEM (Y/N)?"
80 INPUT ANSWERS
90 IF ANSWER$<> 11 N11 THEN 40 ELSE CLOSE #1

200 ;(##(####(##############
*RUN
INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM
? 111
? PAPER
? LEGAL PAD 8 1/2 X 11 50 SHEETS
IS THERE ANOTHER ITEM CY/N)?
? y
INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM

? PEN
? BLUE INK BALL POINT MEDIUM POINT
IS THERE ANOTHER ITEM (Y/N)?
? N

PAGE 4 - 22

MODEL I/III COMPILER BASIC BUILDING DATA FILES

®-------------

10 REM *** DEMO OF FORMATTED INPUT FROM A SEQUENTIAL FILE***
20 REM
30 OPEN #l, 11 ITEM/DAT 11

, MODE=::R, TYPE=S
40 INPUT USING #1; 100, NO$, NAMES, DES$
50 IF EOF(#l) <> 0 THEN 90
60 PRINT: PRINT "ITEM NUMBER= ";NOS, "NAME= ";NAMES
70 PRINT 11 DESCRIPTION OF THE ITEM: "; DES$
80 GOTO 40
90 CLOSE #1

100 ;(##(####(##############
*HUN

ITEM NUMBER = 1 1 1
DESCRIPTION OF THE ITEM LE:GAL

ITEM NUMBER = 2:2~2
DESCRIPTION OF THE ITEM BLUE

NAME -·· PAPER
PAD B 1/2

NAME -· PEN
IN~\ BALL p

®

PAGE 4 - 23

MODEL I/III COMPILER BASIC BUILDING DATA FILES

SEQUENTIAL ACCESS
USING BINARY INPUT/OUTPUT

To use the binary input/output method, use the same procedures
as the stream input/output method, except replace PRINT# with
WRITE and INPUT# with READ.

Sample Programs:

10 REM *** DEMO OF BINARY OUTPUT TO A SEQUENTIAL FILE*** 20 REM
30 OPEN #1, "SALES/DAT", MODE=W, TYPE=S
40 PRINT "INPUT (1) ITEM NO. (2) JAN SALES (3) FEB SALES (4) MAR SALES
50 INPUT NO%, JAN, FEB, MAR
60 WRITE #1; NO%, JAN, FEB, MAR
70 PRINT "IS THERE ANOTHER ITEM <YIN)";
80 INPUT ANSWER$
90 IF ANSWER$<> "N" THEN 40 ELSE CLOSE #1

*RUN
INPUT (1) ITEM NO. (2) JAN SALES (3) FEB SALES (4) MAR SALES
? 111
? 1000
? 2000
? 3000
IS THERE ANOTHER ITEM (Y/N)? Y
INPUT (1) ITEM NO. (2) JAN SALES (3) FEB SALES (4) MAR SALES
? 222
? 1500
? 2000
? 2500
IS THERE ANOTHER ITEM (Y/N)? N
STOP LINE 90

*

----------rtadaelhaeli----------
PAGE 4 - 24

MODEL I/III COMPILER BASIC BUILDING DATA FILES
-------------TRS-BO@ ___________ _

10 REM
20 REM

*** DEMO OF BINARY INPUT FROM A SEQUENTIAL FILE***

30
40
50
60
70
80
90

OPEN #1, "SALES/DAT", MODE=R,
PRINT H ITEM N0 11

' "JAN SALES"'
READ #1; NO%, JAN, FEB, MAR
IF EOF(#1) <> 0 THEN 90
PRINT NO%, JAN, FEB, MAR
GOTO 50
CLOSE #1

TYPE=S
"FEB SALES 11

,

*RUN
ITEM NO

11 1
JAN SALES

1000
1500

FEB SALES
2000
2000

STOP LINE 90
,JI!•

"MAR SALES 11

MAR SALES
3000
2500

----------- lad1elllaeli----------
PAGE 4 - 25

MODEL I/III COMPILER BASIC BUILDING DATA FILES

BUILDING A DIRECT ACCESS FILE

As with sequential access, you may either use the stream,
formatted, or binary methods to input and output data to a
direct access file. We will discuss the formatted method firsts

Again, in going through these sample programs, you will find it
helpful to read about the keywords we use in the Keywords
Chapter of this manual.

DIRECT ACCESS
USING FORMATTED INPUT/OUTPUT

Formatted input/output is a common way to build direct access
files, since it will ensure that each record has the same length
and is in the same format.

Building the file

Building a direct access file is actually very similar to the
procedure of building a sequential file. The difference is:

- you must specify the length of each record in the OPEN
statement

- you must assign each record a record number

®

PAGE 4 - 26

MODEL I/III COMPILER BASIC BUILDING DATA FILES @ _____________ _

These are the procedures to use:

1. Open the disk file with OPEN.
2. Print a data record to the disk file with PRINT USING

#, specifying its record number.
3. Repeat step 2 until you your program has output all

records desired to the disk file, and
4. Close the file with CLOSE.

Here is a sample program following these procedures:

10 REM *** DEMO OF FORMATTED OUTPUT TO A DIRECT FILE***
2C1 REM
30 OPEN #1, "LIST/DAT", MODE=W, TYPE=D, LENGTH=32
40 X ==1
50 PRINT: INPUT PROMPT= 11 LAST NAME ? 11

; L..NAME$
5 2 INPUT Pl=<OMPT= 11 FIRST NAME ? " ; FN."ME$
SL~ INPUT PROMPT= II ADDRESS ? II ; ADD$
70 PRINT USING #1, KEY=X; 110~ LNAME$, FNAME$, ADD$
80 INPUT PROMPT= 11 IS THERE ANOTHER ADDRESS (Y/N) ? 11

; ANSWER$
100 IF ANSWER$:::: 11 N" THEN CLOSE ~H ELSE X == X + 1 : GOTO ~;m
110 ;(#########(######(##############

*RUN

LAST NAME ?HARRISON
FIRST NAME ?PATRICIA
ADDRESS ?1513 NORTH MOCKINGBIRD LANE
IS THERE ANOTHER ADDRESS CY/N) ?Y

LAST NAME ?JOHNSON
FIRST NAME ?GEORGE
ADDRESS ?1811 SOUTH HAMPTON
IS THERE ANOTHER ADDRESS (Y/N) ?N

Line 110 is the image line. It determines how each record's
data will be formatted on the diskette. In this program, each
record will be divided into three fields. The< character marks
the beginning of each field:

the first field has 10 characters;
the second, 7;
the third, 15.

for a total of 32 characters in each record.

Line 30 opens the file with OPEN:

-----------rtattaelllaeli----------
PAGE 4 - 27

MODEL I/III COMPILER BASIC BUILDING DATA FILES

- it references the file as file unit #1
- it names the file "LIST/DAT"
- it sets the MODE to W (write)
- it sets the TYPE to D (direct)

it sets the LENGTH (record length) to 32 characters in
each record ..

Line 70 outputs a record to the disk file using the format set
on line llOe Notice that in direct access, this PRINT USING#
statement must specify a KEY (record number) for each record.

Line 100:
- closes the file if the operator does not want to output

any more records, or
- increments the record number by 1 and sends the program

back to print the next record to the disk file.

Reading the File (Input from the File)

To read every record in the file, you may use the same
procedures that you would use in sequential access, except:

- in the OPEN statement, you must specify the record length
- in the INPUT USING# statement, you must specify the KEY

(record number) you want to input from the file

These are the procedures:

1 .. Open the disk file with OPEN, specifying the record
length ..

2. Read in a data record with PRINT USING#, specifying
the record number ..

3. Use EOF to see if you have reached the end of the file

4. Repeat steps 2 and 3 until you have read in all the
records, and then

5. When you have reached the end of the file, close it
with CLOSE.

Here is a sample program following these procedures:

10 REM
20 REM

*** DEMO OF FORMATTED INPUT FROM A DIRECT FILE***

30 OPEN #1, "LIST/DAT", MODE=R., TYPE=D, LENGTH=32
40 X :::: 1
60 INPUT USING #1, KEY=X; 130, LNAME$, FNAME$, ADDS
65 IF EOF(#1) <> 0 THEN 100

--------lladlO

PAGE 4 - 28

MODEL I/III COMPILER BASIC BUILDING DATA FILES
-----------TRs-so@ ___________ '"

70 PRINT: PRINT "RECORD#"; X
80 PRINT LNAMES;", ";FNAMES,,,ADDS
90 X = X + 1 : GOTO 60

100 CLOSE #1
130 ;(#########(######(##############

*RUN

RECORD =1:1: 1
HARRISON , PATRIC!
1513 NORTH MOC~\

RECORD# 2
JOHNSON , GEORGE
1811 SOUTH HAMP

Line 130 is the image line determining what format to use in
inputting each record from the disk file. This is the same
image that was used in building the file.

Line 30 opens the file with OPEN:
- it references it as file unit #1
- it names it LIST/DAT
- it sets the MODE to R (read)
- it sets the TYPE to D (direct)
- it sets the LENGTH to 32 characters per record

Line 60 inputs record# X from disk, using the formatted image
set in line 30. It assigns the three fields of data to the
variables LNAME$, FNAME$, and ADD$.

Line 65 checks to see if you have reached the end of the file
yet. If so, it jumps to line 100 where the file is closed.

Line 90 increments the record# by one and sends the program
back to input the next record from disk.

Updating and Adding to the File

Direct access is the easiest way to update a file. Here are the
procedures:

1. Open the file with OPEN, specifying the record length.
2. By specifying the record number, you may then do one of

the following:
a. input the record from the disk file by

using INPUT USING#
b. delete the record from disk file with

DELETE#, or
c. output new data to the disk file, for

-----------llad1e/llaell----------
PAGE 4 - 29

MODEL I/III COMPILER BASIC BUILDING DATA FILES

that record number with PRINT USING#
3. Repeat step 2 until you have finished updating the

file, and then
4. Close the file with CLOSE.

Here is a sample program updating a direct access file:

10 REM
20 REM

*** DEMO OF UPDATING A FORMATTED DIRECT FILE***

30 OPEN #1, "LIST/DAT", MODE=U, TYPE=D, LENGTH=32
1~0 PRINT : PRINT "< i > DISPLAY RECORD" : PFHNT "<2> m:LETE RECORD"
50 PRINT "(3) ADD/CHANGE" : PRINT 11 (L~) CLOSE FILE 11

60 INPUT PROMPT="SELECT ONE OF THE ABOVE:"; S
70 INPUT PROMPT= 11 RECORD NO (0 IF CLOSIN(; FILE) ?"; R
80 ON S GOTO 110, 160, 200, 270
90 REM

100 REM
110 REM *** (1) DISPLAY RECORD ROUTINE***
120 INPUT USING #1, KEY=R; 290, LNAME$, FNAME$, ADD$
1 :m PR I NT LNAME$; " ., " ; FNAMEs, , , ., ADD$: GOTO L1.0

1-<\0 REM
15(~ REM
160 REM *** (2) DELETE RECORD ROUTINE***
170 DELETE #1, KEY=R: GOTO 40
180 REM
190 liEM
200 REM *** (3) ADD/CHANGE RECORD ROUTINE***
210 INPUT PROMPT=::::"LAST NAME ?"; LNAME$
220 INPUT PROMPT=" FIRST NAME ? 11

; FNAMEt>
230 INPUT PROMPT= 11 ADDRESS ?"; ADD$
240 PRINT USING #1, KEY=R; 290, L..NAME$, FNAME$, ADD$
2~'30 REM
260 REM
270 REM *** (4) CLOSE FILE***
280 CLOSE #l
290 ;(#########(######(##############

GOTO L1.(2)

Here is a sample of what might happen when this program is RUN:

*RUN

(1) DISPLAY RECORD
(2) DELETE RECORD
(3) ADD/CHANGE
(L~) CL0-8E FILE

PAGE 4 - 30

MODEL I/III COMPILER BASIC

SELECT ONE OF THE ABOVE :3
RECORD NO (0 IF CLOSING FILE) ?3
LAST NAME ?ALEXANDER
FIRST NAME ?MARIA
ADDRESS ?3333 ELK GROVE

(1) DISPLAY RECORD
(2) DELETE RECORD
(3) ADD/CHANGE
(4) CLOSE FILE
SELECT ONE OF THE ABOVE :1
RECORD NO (0 IF CLOSING FILE) ?3
ALEXANDER ,MARIA
3333 EU·{ GROVE

(1) DISPLAY RECORD
(2) DELETE RECORD
(3) ADD/CHANGE
(1+) CLOSE FILE
SELECT ONE OF THE ABOVE :4
RECORD NO (0 IF CLOSING FILE) ?0

BUILDING DATA FILES

Line 290 is the image line. This is format which was used when
building the file.

Line 30 opens the file:
- it references it as file #1
- it names it LIST/DAT
- it sets the MODE to U (update)
- it sets the TYPE to D (direct)
- it sets the LENGTH to 32 characters per record

Line 70 asks the operator to input a record number (KEY)

Line 80 sends the program to the Display Routine, Delete
Routine, Add/Change Routine, or to close the file, depending on
the operator's choice.

Line 120 inputs the record number the operator selected using
the format set in line 290.

Line 170 deletes the record number the operator selected.

Line 240 prints new data to the record number the operator
selected ..

Line 280 closes the file.

----------- ltadaelllaeli----------
PAGE 4 - 31

MODEL I/III COMPILER BASIC BUILDING DATA FILES

DIRECT ACCESS
USING STREAM INPUT/OUTPUT

To use the stream input/output method, follow the procedures of
the formatted method replacing PRINT USING# with PRINT# and
INPUT USING# with INPUT#.

To determine the length of each record you must allot:
- one byte for each character of data
- one byte for each new field of data
- one byte preceeding each positive number

Sample programs:

10 REM
REM

*** DEMO OF STREAM OUTPUT TO A DIRECT FILE***

OPEN #1, "NAME/DAT",
X = 1
PRINT: PRINT "FIRST
FNAME$ = INPUT$(1)
PRINT "LAST NAME?";
LNAME$ = INPUT$(5)

MODE=W, TYPE=D, LENGTH=B

INITIAL 711" . ,

20
30
40
50
60
70
80
90 PRINT #1, KEY=X; FNAMES, LNAMES

100
110

*RUN

INPUT PROMPT="IS THERE ANOTHER NAME (Y/N) ?"; ANSWERS
IF ANSWERS= "N" THEN CLOSE #1 ELSE X = X + 1 : GOTO 50

FIRST INITIAL ?M
LAST NAME ?WASH!
IS THERE ANOTHER NAME (Y/N) ?Y

FIRST INITIAL ?C
LAST NAME ?MILLE
IS THERE ANOTHER NAME (Y/N) ?Y

FIRST INITIAL ?J
LAST NAME ?SMITH
IS THERE ANOTHER NAME (Y/N) ?N
STOP LINE 110
-M·

----------- llad1elhaeli----------
PAGE 4 - 32

MODEL I/III COMPILER BASIC BUILDING DATA FILES
------------TRs-so@ __________ _

10 REM
20 REM

*** DEMO OF STREAM INPUT FROM A DIRECT FILE***

30 OPEN #1, "NAME/DAT", MODE=R, TYPE=D, LENGTH=B
40 X = 1
65 INPUT #1, KEY=X; FNAMES, LNAMES
68 IF EOF(#1) <> 0 THEN 120
70 PRINT: PRINT "RECORD#"; X
80 PRINT FNAMES; ". "; LNAMES

110 X = X + 1 : GOTO 65
120 CLOSE #1

*RUN

RECORD# 1
M .. WASHI

RECORD# 2
C .. MILLE

RECORD# 3
J .. SMITH
TRSDOS ERROR 29 LINE 65

*

----------lad1elhaeli----------
PAGE 4 - 33

MODEL I/III COMPILER BASIC BUILDING DATA FILES

DIRECT ACCESS
USING BINARY INPUT/OUTPUT

To use the binary input/output method, follow the procedures of
the formattted method replacing PRINT USING# with WRITE and
INPUT USING# with READ.

Determining the length of each record is a little more complex.
You should allot:

Bytes

2

3 - 9

l

for each integer (integers are
whole numbers beteen -32768 and
32767)

for each real number:
l byte for the length byte
l byte for the exponent byte
l byte for each two signigicant

digits

for the beginning length byte

See the Overview of this chapter for more information.

Sample programs:

10 REM *** DEMO OF BINARY OUTPUT TO A DIRECT FILE***
20 REM
30 INTEGER
40 OPEN #1, "SALES/DAT", MODE=W, TYPE=D, LENGTH=9
50 X=1
60 INPUT PROMPT= "ITEM NO. ?";NO: INPUT PROMPT= "JAN SALES?"; JAN
70 INPUT PROMPT= "FEB SALES?"; FEB: INPUT PROMPT= "MAR SALES?"; MAR
80 WRITE #1, KEY=X; NO, JAN, FEB, MAR
90 PRINT "IS THERE ANOTHER ITEM (Y/N)";

100 INPUT ANSWER$
110 IF ANSWER$= "N" THEN CLOSE #1 ELSE X = X + 1 GOTO 60

----------- llad•lhaeli----------
PAGE 4 - 34

MODEL I/III COMPILER BASIC BUILDING DATA FILES
------------TRS-BO@ ___________ _

*RUN
ITEM NO.. ? 111
JAN SALES ?3000
FEB SALES ?2433
MAR SALES ?5543
IS THERE ANOTHER
ITEM NO .. ?222
JAN SALES ?9987
FEB SALES ?8888
MAR SALES ?7987
IS THERE ANOTHER
STOP LINE 110

*

1)1

ITEM <YIN)? Y

ITEM (Y/N)? N

10 REM *** DEMO OF BINARY INPUT FROM A DIRECT FILE***
20 REM
30 INTEGER
40 OPEN #1, "SALES/DAT", MODE=R, TYPE=D, LENGTH=9
50 X=1
60 PRINT "ITEM NO .. ", "JAN SALES", "FEB SALES", "MAR SALES"
70 READ #1, KEY=X; NO, JAN, FEB, MAR
80 IF EOF(#1) <> 0 THEN 110 ~o~::; -1
90 PRINT NO, JAN, FEB, MAR

100 X = X + 1 : GOTO 70
110 CLOSE #1

*RUN
ITEM NO ..

111
222

JAN SALES
3000
9987

FEB SALES
2433
8888

MAR SALES
5543
7987

----------- llad1elllaeli-----------
PAGE 4 - 35

MODEL I/III COMPILER BASIC BUILDING DATA FILES

-------------TRS-BO ®------------

BUILDING AN INDEXED ACCESS (ISAM) FILE

To build an indexed access file, you may use the same three
input/output methods that were shown with sequential and direct
access files: formatted, stream, and binary. We will only show
the formatted method in this chapter, but remember that the
other methods are available to you.

INDEXED ACCESS FILE
USING FORMATTED INPUT/OUTPUT

Building the File

To build the file, use the same procedures that were shown in
building a formatted direct access file, except:

In the OPEN statement, you must specify the maximum
number of characters you will use for each KEY.

In the PRINT USING# statement, you must assign each
record a KEY rather than a record number. This key may be any
name you choose.

Here is a sample program:

-----------lladaelllaeli----------
PAGE 4 - 36

MODEL I/III COMPILER BASIC BUILDING DATA FILES

10 REM
20 REM

*** DEMO OF FORMATTED OUTPUT TO AN INDEXED FILE***

30 OPEN #1, 11 LIST/DAT 11
, MODE=W, TYPE==I, LENGTH=32, •{EY=3

40 PRINT: INPUT PROMPT= 11 LAST NAME ? 11
; LNAMES

50 INPUT PROMPT="FIRST NAME 7 11
; FNAMES

60 INPUT PROMPT= 11 ADDRESS ? 11
; ADD$

70 PRINT 11 KEY 7 11
;: K$=INPUT$(3)

80 PRINT USING #1, KEY=K$; 110, LNAME$, FNAME$, ADD$
90 INPUT PROMPT= 11 IS THERE ANOTHER ADDRESS (Y/N) 7 11

; ANSWER$
100 IF ANSWER$= 11 N11 THEN CLOSE #1 ELSE GOTO 40
110 ;(#########(######(##############

Line 110 is the image line. It formats the data output to each
record in three fields containing 10, 7, and 15 characters for a
total of 32 characters.

Line 30 opens the file:
- it references it as file unit #1

it names the file "LIST/DAT 98

it sets the MODE to W (write)
it sets the TYPE to I (indexed)
it sets the record LENGTH to 32
it sets the length of each KEY to 3 characters

Line 70 asks the operator to specify a key name to use in
referencing the file.

Line 80 prints the record to disk file.

Line 100:
closes the file if the operator is finished or
goes back to print another record to the disk file.

Reading the File

To read every record in the file, follow the same procedures
that were shown in reading a formatted direct access file,
except:

- In the OPEN statement, you must specify the number of
characters in the KEY.

- In the INPUT USING# statement, you may leave out the key
name ..

- You may use a special function named KEY$ to read the
name of the key for each record.

®

PAGE 4 - 37

MODEL I/III COMPILER BASIC BUILDING DATA FILES

Sample program:

10 REM *** DEMO OF FORMATTED INPUT FROM AN INDEXED FILE***
20 REM
30 OPEN #1, "LIST/DAT", MODE=R, TYPE=I, LENGTH=32, KEY=3
40 INPUT USING #1; 200, LNAME$, FNAME$, ADD$
50 IF EOF(#1) <> 0 THEN 90
60 PRINT
70 PRINT LNAMES;", "; FNAMES,,, ADDS
80 GOTO 40
90 CLOSE #1

200 ;(#########(######(##############

Updating the File

To update the file, you follow the same procedures as shown in
updating a formatted direct access file, except:

- In the OPEN statement, you must specify the number of
characters in the KEY.

- You must specify the name of the KEY in the INPUT USING
#, PRINT USING# and. DELETE# statements.

Sample program:

10 REM
20 REM

*** DEMO OF UPDATING A FORMATTED INDEXED FILE***

30 OPEN #1, "LIST/DAT", MODE=U, TYPE=I, LENGTH=32, KEY=3
"•0
50
60
70
80
90

100
110
120
130
140
150
160
170
180

PRINT: PRINT "(1) DISPLAY RECORD" : PRINT "(2) DELETE RECORD"
PRINT "(3) ADD/CHANGE" : PRINT "(4) CLOSE FILE"
INPUT PROMPT="SELECT ONE OF THE ABOVE:"; S
INPUT PROMPT="KEY ?";KS
ON S GOTO 110, 160, 200, 270
REM
REM
REM
INPUT
PRINT
REM
REM

*** (1) DISPLAY RECORD ROUTINE***
USING #1, KEY=K$; 290, LNAMES, FNAMES, ADDS
LNAME$;", ";FNAMES,,,ADDS: GOTO 40

REM *** (2) DELETE RECORD ROUTINE***
DELETE #1, KEY=K$: GOTO 40
REM

®

PAGE 4 - 38

MODEL I/III COMPILER BASIC BUILDING DATA FILES

-------------TRs-so@ ___________,,

190
200
210
220
230
240
250
260
270
280
290

REM
REM
INPUT
INPUT
INPUT
PRINT
REM
REM
REM

I

*** (3) ADD/CHANGE RECORD ROUTINE***
PROMPT="LAST NAME?"; LNAMES
PROMPT="FIRST NAME?"; FNAMES
PROMPT="ADDRESS ?"; ADD$
USING #1, KEY=K$; 290, LNAMES, FNAMES, ADDS

*** (4) CLOSE FILE***
CLOSE #1
;(#########(######(##############

®

PAGE 4 - 39

GOTO 40

-------------TRS-ao@ ___________ _

* * * Chapter 5 *
*
*
*

SEGMENTING PROGRAMS
*
*
*

----------llat11elllaell----------

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS @ _____________ _

WHY SEGMENT PROGRAMS

The BASIC Compiler offers two ways of segmenting long and
complicated programs into shorter, more manageable programs:

1. Subprograms are high powered subroutines which act on
data stored under different variable names. Like subroutines,
they are called from the main program, executed, and return back
to the main program.*

Subprograms are helpful if you are performing the same
complicated operations on different variables repeatedly in
different parts of your program. For example, a subprogram that
draws graphs could be called many times from the programo Each
time, it would be sent different data.

2. Program chaining is a method of breaking a very large
program into smaller programs which will each load into memory
and execute separately. This is a solution when a program
requires too much memory to execute.

* A subprogram may also be called from another subprogram.
However, they may not be recursive (that is, a subprogram may
not call itself).

OUTLINE FOR CHAPTER 5
SEGMENTING PROGRAMS

I. How to Build a Subprogram
A. How to Pass All Types of Data
B. Storing Subprograms
C. Calling Assembly Language Programs

II. How to Chain Programs

III. Subprograms VS. Program Chains

--------ltadle

PAGE 5 - 1

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

HOW TO BUILD A SUBPROGRAM

All subprograms must be called from the main program with the
CALL statement. Normally, you will want the CALL statement to
"pass 88 data to the subprogram. For example:

CALL IDANNUAL"; F

calls a subprogram named ANNUAL and passes the data stored in F
to the subprogram.

The subprogram must begin with a SUB statement which identifies
it. If the subprogram is being passed data, this statement must
contain a variable name which can temporarily store the data.
For example:

SUB "ANNUAL 11
; X

begins the ANNUAL subprogram. The data in Fis passed to the
subprogram, which temporarily stores it as X. Here is the
entire subprogram:

100 SUB II ANNUAL n; X
110 X = X * 52
120 SUBEND

Notice that a subprogram must always end with a SUBEND
statement. The main program must always end with an END
statement. Here is the main program and the subprogram:

5 X = 5
10 F = 100
20 CALL 11 ANNUAL"; F
30 PRINT X, F
40 END

100 SUB II ANNUAL II; X
110 X = X * 52
120 SUBEND

Here, the main program passes the value of 100, which is stored
in F, to the subprogram. The subprogram temporarily stores 100
in X, performs its operation on X and passes the resulting value
of 5200 back to the variable Fin the main program. When
instructed to PRINT X and F, the main program prints:

5 5200

Notice that the subprogram's variable X had no effect on the

ll-------------
PAGE 5 - 2

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

main programs's variable X. This is because subprogram and main
program variables are stored separately. The subprogram only
temporarily stores and acts on the value which is passed to it
-- F.

Main Program Sub Program

SUB

CALL

END SUB END

The same subprogram may be called repeatedly in the program,
being passed different values each time. For example:

10 F = 100: G = 52.25: E = 26.50
20 CALL "ANNUAL"; F
30 CALL "ANNUAL"; G
40 CALL '°ANNUALIU; E
50 PRINT F, G, E
60 END

100 SUB "ANNUAL"; X
110 X = X * 52
120 SUBEND

When executed, this program prints:

5200 2717 1378

One CALL statement can pass several different variables to a
subprogram. For example:

10 MONTH$= "JANUARY"
30 DAY%= 5
50 CALL "CAL"; MONTH$, DAY%
60 PRINT MONTH$; DAY%
70 END
9 0 SUB "CAL " ; A$, B %

100 A$= SEG$(A$, l, 3)
110 B% = B% + 7

----------- ltadaelhaell----------
PAGE 5 - 3

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS
@ _____________ _

120 SUBEND

Notice that the variable types in the SUB statement {line 90)
match the variables passed by the CALL statement {line 50). In
this particular program, CALL and SUB list the string variable
first and the integer variable second.

When executed, the program prints:

JAN 12

Subprograms may be sent the contents of an entire array. For
example:

CALL "GRAPH"; A {)

calls the subprogram GRAPH and passes the entire contents of
array A to the subprogram.

SUB "GRAPH"; X ()

begins the subprogram GRAPH. The entire contents of array A are
temporarily stored in the subprogram as array X.

Here is a program which passes array data to a subprogram:

5 DIM A(3)
10 DATA 5, 10, 15
20 READ A(l), A(2), A (3)
30 CALL "GRAPH"; A() , "GRAPH"
40 END
50 SUB "GRAPH"; X() , Y$
60 PRINTY$
70 FOR I= 1 TO 3
75 READ Z$: PRINTZ$;
80 PRINT STRING$(X(I), "X"); X {I)
90 NEXT I
95 DATA "MON", "TUES", "WED II

100 SUBEND

Notice how the subprogram GRAPH beginning in line 50 has its own
DATA statement (line 95). This cannot be read by the main
program. Nor can the main program's DATA statement (line 5) be
read by the subprogram. This is because before being executed,
the main program and the subprogram are compiled separately.

You may pass the entire contents of a two dimension array like
this:

CALL II TWO " ; A { ,)

---------rtaf.11elhaell---------

PAGE 5 - 4

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

The subprogram needs a two dimensional array variable name to
accept the contents of array A, such as:

SUB "TWO"; X(,)

HOW TO PASS ALL TYPES OF DATA

The table on the next page shows how to match up the data in the
CALL and SUB statement. The first column shows the type of data
you may pass from the main program in a CALL statement. The
second column shows the accompanying type of variable which must
be in the SUB statement of the subprogram to receive this data.

DATA PASSED FROM THE
MAIN PROGRAM

numeric expression
CALL "SUBPROG" ; 14 / 3
CALL "SUBPROG"; 14 * 3

numeric variable contents
CALL "SUBPROG"; M
CALL "SUBPROG"; M%

string constant contents
CALL "SUBPROG"; "EXAMPLE"

string variable
CALL "SUBPROG"; M$

entire one-dimensional
numeric array contents
CALL II SUBPROG II ; M ()
CALL "SUBPROG"; M% ()

entire two-dimensional
numeric array contents
CALL "SUBPROG IU ; M (,)
CALL "SUBPROG"; M%(,)

contents of numeric
array element
CALL "SUBPROG"; M(1)
CALL "SUBPROG"; M(l,1)

VARIABLE RECEIVER IN
SUBPROGRAM

numeric variable
SUB "SUBPROG"; S
SUB "SUBPROG"; S%

numeric variable
SUB II SUBPROG 9B j S
SUB "SUBPROG"; S%

string variable
SUB "SUBPROG"; S$

string variable
SUB 8D SUBPROG BU; S$

empty one-dimensional
numeric array
SUB "SUBPROG"; S()
SUB "SUBPROG"; S%()

empty two dimensional
numeric array
SUB II SUBPROG"; s (,)
SUB "SUBPROG"; M%(,)

numeric subscripted
variable
SUB II SUBPROG"; s
SUB II SUBPROG 11

; S

-----------llad1elhaeli----------
PAGE 5 - 5

MODEL I/III COMPILER BASIC

CALL "SUBPROG"; M% (1)
CALL "SUBPROG"; M%(1,l)

entire one-dimensional
string array contents
CALL "SUBPROG"; M$ ()

entire two-dimensional
string array contents
CALL DI SUBPROG H ; M$ (,)

contents of one string
array element
CALL "SUBPROG"; M$(1)
CALL "SUBPROG 11

; M$(1,1)

--------rtadle

SEGMENTING PROGRAMS

SUB ID SUBPROG II ; s %
SUB 11 SUBPROG 11

; S%

empty one-dimensional
string array
SUB "SUBPROG"; S$()

empty two-dimensional
string array
SUB "SUBPROG"; S$(,)

string subscripted
variable
SUB "SUBPROG"; S$
SUB Bl SUBPROG 8U ; s $

PAGE 5 - 6

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

STORING SUBPROGRAMS

Subprograms may either be SAVEd or COMPILEd as part of the main
program or as a separate program. If they are stored
separately, they must be loaded along with the main program.

If the subprogram and main program were both SAVEd separately as
BASIC prr lrams, use the APPEND command to load the subprogram.
For exam .e:

OLD MAINPRG/BAS

Loads the main BASIC program, and

APPEND SUBPRG/BAS

Appends the subprogram to the main program.

CALLING ASSEMBLY LANGUAGE PROGRAMS

RSBASIC provides a method for calling an external assembled
object code program from your BASIC program. To do this, use
these guidelines:

When writing the assembly language program ...

1. We suggest that you calculate the originating address
for your assembly language program as follows:

TRSDOS TOP memory address*
- number of bytes in your program

originating address

* Your TRSDOS TOP memory address depends on the size of your
system, which version of TRSDOS you have, and whether you will
load high overlay programs such as DEBUG and SETCOM. The top
addresses used in the following sample program will only work
on systems with at least 48K of memory.

2. If the subprogram will receive parameters passed to it
by the main BASIC program, refer to the section on "Parameter
Passing" of Assembly Language Subprograms in the Programmers
Information Section. The sample program on the following pages
demonstrates an application of how this is done beginning on
line 220 of the INITIATE, TRANSMIT, and RECEIVE routines.

------------11 lllaeli-------------
PAGE 5 - 7

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

When writing the BASIC program ...

1. Use the EXT statement to define this address and to
name the subprogram. For example:

EXT INIT = &0C000

assigns the name INIT to the first subprogram and defines its
originating address as hex C000.

The EXT statement should be at the beginning of your program.

2. Use the CALL statement to call the assembled program in
the same manner that CALL is used to call a BASIC subprogram.
For example:

CALL 81 INIT uu; I

calls the subprogram named INIT and passes the parameter (data)
stored in I.

When executing the program ...

1. Load your assembled subprogram before RSBASIC using the
TRSDOS "LOAD" command. For example:

LOAD EX/OBJ:l

loads the assembled program EX/OBJ from the diskette in drive 1.

2. After loading your assembled subprogram, load RSBASIC
specifying the top memory address it may use. This address
should be the originating address of your assembled subprogram
minus one. For example, if your originating address is C000,
you should load RSBASIC with the T=BFFF option. (See Using the
BASIC Compiler, Chapter 1 for the correct syntax.)

-----------11 aelhaell-----------
PAGE 5 - 8

10 REM USING THE MODEL III AS A TERMINAL
20 REM DEMONSTRATION OF R CALL TO AN EXTERNAL ASSEMBLER
30 REM SUBROUTINE.
40 REM
~0 REM BEFORE RUNNING THIS PROGRAM, LORD THE 'TERM'
60 REM PROGRAM INTO MEMORY. BASIC TOP OF MEMORY MUST
70 REM BE SET TO HEX RDOR BFFF, E.G., START BASIC THIS
90 REM WAV 1 RSBRSIC T•BFFF
90 REM THE ASSEMBLER ROUTINE INITIATE RS232-C,
100 REM THEN TRANSMIT THE CHAR AND RECEIVE THE CHAR.
110 REM
111 INTEGER A,I
130 EXT IHIT ~ ~0C000 1 EXT RSTX = ~00000 1 EXT RSRCV = ~0E000
131 PRINT II INPIJT THE BRUD RFITE CODE''
132 REM INCOOE SHOULD BE INTEGER
133 INPUT A
134 I•INT(FD
140 CALL 11 HHT 11

; I
150 Ct• INKEV$
151 IF C$ •""THEN 155
132 PFU ~~T Cl
133 CRLL "RSTX";Ct:
155 PRH~T CS
1'50 CALL "RSRCV"JDt:
16!5 PRINT "RECEIVE CHRRRCTER =";0$
170 GOTO 130
180 ENO

00100 ORG 0C000H
00110 ,~~~~~~~-~~--~---~~-~~~~~~~-~~-~~~-~~~~-~~~--~~~
00120; INITIATE ROUTINE
00130;
00140 INIT• EQU $
001~0 LO HL,PDRADR
08160 LD (HL),E
00170 INC HL
00180 LO (HL),0
00190 J--- -08200 J INITIATE THE BAUD RATE & W/NW SWITCH
80210 J
90220
00230
01240
10230

LO
PUSH
LO
JP

HL,RET0
HL
HL, (PORROR)
(HL)

;SAVE RETURN ADDR

J
,CALL DECODE ROUTINE

PAGE 5 - 9

,---00270 J
00290 J
00:290 J
00300 J
00310 J
00320 J
00330 J
00340;
00350 RETrlJ•
003G0
013371!
00390
00390
00400
00410
00420
00430
00440
004!50
00460
00470
00480
00490 ><OZ•
00500
00510
00520
00!530 OVR1•
00540 OVER•
00550
0B!5S0
90!570
00580
00!590 EFTi

RETURN 01:CODlHC ROUTINE
A• RETURN CODE 0 •> MORE ITEM LIST

NOT 0 -> HO MORE LEFT
PARM TVPE 0 -> INTEGER

1 -> RERL
2 -> STRING

OE• ARGUMENT ADOR

LO
CF'
JP
INC
LO
CP
JP
DEC
LO
LO
LO
LO
OR
JR
DEC
JR
ADD
JR
ADD
AOD
LO
LD
LD
CALL
RET

A,0
e
HZ,ERROR
OE
A,. (DE)
0
HZ,ERROR1
OE
Fl, (DE)
B, A
DE, 16
HL,0
Fl
Z,OVER
B
Z,OVR1
HL,DE
xoz
HL,OE
A,.L
(41FIH), R
A.,0
(41FAH)., A

INIT

;IF INTEGER
;NOT INTEGER

JGET MSB OF INTEGER ,
;CODE > U5
;GET CODE

;SAVE TO B
;LET DE• 15
;INIT HL • 0
;OR FOR Z FLAG
J IF CODE • 0
>BAS COUNTER
;
J
J
J
;A•(COOE*1S)+C001
J
;SET NO WAIT SWITCH
;
JCRLL FOR RS232-C INITIATE

00600 ,--00610 ,I

00620;
00630 PDRFIORt
00640 RSINIT
006!50 MSG1
00'560
00670 MSG2
00690
00690 VDLINE

DEFINE ROUTINE

DEFW 0
EQU 90
DEFM 'CODE IS NOT~ INTEGER'
DEFB IDH
OEFM 'CODE GREATER THAN 15'
OEFB 00H
EQIJ 539

00700 ;---00710 ·'
00720 ,I

00730 ERROR
00740
00750 TURN 1

00760
00770 ERROR 1 1

00780
10790

ERROR ROUTINE

EQU $
LO HL,MSG1
CALL VOLlNE
JR EFT
LO HL,MSG2
.. ..IR TURN
END INIT

PAGE 5 - 10

08100 ORG 00000M
00110 ,~~~~~~~--~-~~~-~~----~~~~~~~---~~-~~~~~~~-~~~--~-
00120 J TRANSMIT ROUTINE
00130 ,I

00J.40 RSTX:
00130
00170
00190

LO
LO
INC
LO

HL,PDRROR
(HL), E
HL
(HL), D

00190 ,~~~~~~~~~~~~~~~~~~~-~~~~~~--~~~~-~~~~~--~~~~-~-~~

00200
00210

TRANSMIT THE CHAR TO RS232-C INTERFACE

00220 LD HL,RET1
00230 PUSH HL
00240 LO HL,<PDRROR) ;
002~0 JP CHL) ;CALL PDR
00260 J~~~~~~-~~~~~--~~-~~~-~-~-~~~~-~-~-~~~~--~~-~~~~~~
00270 J RETURN FROM THE DECODING ROUTINE
00280 .&

00290 RET1 1 LD R,2 ; IF STRH~G?
00300 CP 9
00310 JR NZ,ERROR ;IF NOT
00320 ;~~~~~-~~~~~~~~~~~~~~~~~~~~-~-~~~-~~-~~-~~-~~~~~~~
00~30; OE~ ST~ING DOPE
00340;
00350
00:360
00:370
00:390
00390
00400
00410
00420
00430
00440
00450
00460 EFT=

LO
LO
INC
LD
LD
LO
C:P
.JR
INC
LO
CFILL
RET

Fl, (OE)
L.oA
DE
Fl, (DE)
H,A
Fl., (HL)
2
NC,ERROR1
HL
A, (HL)
RSTX1

; FIODR OF STRIWj

;HL -> RDDR OF STRING
J
.I
;A-> STRING LENGTH
;IF LENGTH >2
J
;GET STRING ITSELF

004?0 ;~~-~~~~~~~~~~~~-~~~~~~~~~~~~~-~~~~~--~~~~-~~~~~~~
00480
00490 .1

DEFINE ROUTINE

00500 PDRADR 1 DEFW 0
00510 RST~l 1 EQU 9~
00~20 VDLINE 1 EQU ~39
00530 MSG1 DEFM 'ERROR FOR NOT A STRING'
00540 DEFB 00H
00350 MSG2 OEFM 'ERROR FOR LENGTH OVER 1'
00~60 DEFB 0DH
00570 ;~~~~~~~~~~~~~~~~~~~~--~~~~~~~-~~~~~~~~~~~~~~~~~~~-
00580 J ERROR HANDLING ROUTINE
00!590 ,I

00600 ERRCtR
006j,0
00620 8RCK:
00630
00640 ERRORt
00650
00660
00670

EQIJ
LO
CALL
JR
EQIJ
LO
JR
ENO

$
HL.,MSG1
VDLINE
EFT
$
HL,MSG2
BACK
RSTX

PAGE 5 - 11

00100 ORG 0E000H
00110 J-~----~~--~---~---~~~~~~~----~--~-----~~--~~~-~~~~
00120 J RECEIVE ROUTINE
00130 J
00140 RSRCV 1 EQU $
001~0 LO HL,PDRAOR
00160 LO (HL),E
00170 INC HL
00180 LO (HL),0
00190 ,~~~--~--~~~~~~~~~~~-~~-~--~~~~~~-~~~~-~~-~--~~~-~-~
00200 J RECEIVE A CHAR FROM RS232-C INTERFACE
00210 J
00220 LO HL,RET2 ;SAVE RETURN RODR
00230 PUSH HL
00240 LO HL,(PDRADR)
002S0 JP (HL) ;CALL PDR
00260 ;--~~-~-~-~-~~~~~~~~--~-~~-~~~~-~~~~~~~~~~~~~~~~-~-~
00270 J RETURN FROM DECODING CALL
00280 J
00290 RET2 1

00300
00310
00320
00330
00340
00330
00360
00370
00380
00390
00400
00410
00420
00430
00440
004~0 EFT•

00470 J
00480;
00490 RSRCV1
00~00 VDL I ~U!
00~10 PDRADR
00!520 BUFF
00330 MSG1
00~40

00~150;
00~7'0 ,I

00580 ERROR
00~90
00600
00610
001520

LO
CP
JR
LO
LD
INC
LO
LO
LD
CALI_
LD
LO
LO
INC
LO
LD
RET

A.a 2
B
~~z .. ERROR
Fi> (OE)
L.,A
OE
A, (OE)
H,A
(BUFF).,HL
RSRCV1
A., 1
HL,. (BUFF)
(HL),. A
HL
A,< 41E8H)
< HL).i A

DEFINE ROUTINE

EQU 80
EQU 339
DEF'~J 0
OEFW 0

;IF IT IS STRING7
J
;IF NOT
,I

;LH -> AODR OF STRING

J
;SAVE INTO BUFFER
;CALL RECEIVE ROUTINE
J
;HL • ADDR
;GET LENGTH• 1
J
;GET RECEIVE CHAR
;PUT INTO BUFER

DEFM "RECEIVE NOT A STRING~
DEFB 00H

ERROR HANDLING ROUTINE

EQU $
LO HL,MSG1
CALL VOL I NE
JR EFT
ENO RSRCV

PAGE 5 - 12

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

®--------------
HOW TO CHAIN PROGRAMS

The CHAIN statement chains programs .. For example:

CHAIN "PROG2/BAS"

erases the program presently in memory, loads PROG2/BAS, and
executes it ..

CHAIN "DRILL:2"

erases the program in memory and loads and executes DRILL from
the disk in drive 2 ..

This is how program chaining could be used:

10 PRINT "WHICH DRILLS DO YOU WANT TO TRY"
20 PRINT "(l)ADDITION (2)SUBTRACTION (3)MULTIPLICATION"
30 INPUT X
40 ON X GOTO 100, 200, 300

100 CHAIN "ADD/CMP"
200 CHAIN "SUBTR/CMP"
300 CHAIN "MULT/CMP"

As with subprograms, you may pass data to the chained program.
This is done with the COM statement. COM must be the first line
in both the originating program and the chained program. For
example, this could be the originating program:

10 COM A$
20 PRINT DUTYPE YOUR NAMEUU
30 INPUT A$
40
50
60
70 CHAIN "TWO/BAS"

and the chained program could begin like this:

10 COM A$
20 PRINT "HELLO"; A$
30 PRINT "THESE ARE THE FIRST 5 QUESTIONS"

Because of the COM A$ statement, the value of A$ is retained
during the chaining process.

For more information on COM, see the Keywords Chapter ..

----------- llad1elllaell----------
PAGE 5 - 13

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

-------------TRS-BO ®------------
SUBPROGRAMS VS. PROGRAM CHAINS

Subprograms are a good way to perform complicated routines on
data repeatedly in the program, each time returning back to the
main program. In chaining, it is more difficult to return back
to the original program, since the main program is erased from
memory when a program is chained.

Program chaining does offer a convenient way to write a program
which requires more memory than there is available. The amount
of memory you need to run a series of program chains is only the
amount required to run the longest program in the series.

Subprograms do not have this memory saving capability. All
subprograms must be loaded along with the main program prior to
executing the program. There must be enough memory for the main
program plus all the subprograms which will be called.

----------1tad1e e~------------
PAGE 5 - 14

@) -----------------

**
*
*
*
*
*

Chapter 6

BASIC KEYWORDS

*
*
*
*
*

**

-----------llad1elhaeli----------

MODEL I/III COMPILER BASIC BASIC KEYWORDS
-------------TRs-so@ ___________ _

INTRODUCTION

The RSBASIC programming language is made up of keywords. These
keywords, with their parameters, instruct the Computer to
perform certain operations.

This chapter contains entries for each keyword, organized
alphabetically. The first two pages show the meaning of the
format for each keyword entry. A brief introduction to BASIC's
two types of keywords -- statements and functions -- is on the
next pages.

OUTLINE FOR CHAPTER 6
BASIC KEYWORDS

I. Format for the Keyword Entries

II. Statements

III. Functions

IV. Alphabetical Entries for each Keyword

----------------- rtad1e lhaell -------------------------
PAGE 6 - 1

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-------------TRS-eo@ ___________ _

FORMAT FOR THE KEYWORD ENTRIES

A sample keyword entry is on the next page. This is the meaning
of its format:

1. The first line is the keyword itself. The second line
briefly describes what it does.

2. All keywords are defined as statements or functions:
a. a STATEMENT is a line in a program. It, along with its

parameters, tells the Computer to do some operation when that
particular line in the program is executed.

b. a FUNCTION is a subroutine. It must be a part of a
statement ..

3. The information in the gray box is the syntax for the
keyword. The first line shows the format to use in typing the
keyword. This format line always contains:

a. the keyword itself - this must by typed exactly as it
appears.
And may also contain:

b .. parameters.
The parameters are defined on the next lines. A parameter
enclosed in single quotes means that you must specify its value.
Parameters may only be omitted if the syntax states that this is
allowed.

In the syntax illustrated on the next page, LEN is the keyword
and 'string' is the parameter. The second line gives the
meaning of 'string'. Since 'string' is enclosed in single
quotes, you must specify its value. The syntax does not state
that 'string' may be omitted. Therefore 'string' is required.

4. This explains how to use the keyword.

5. These examples illustrate how the keyword might be used. All
of these examples must be a line in the program to be executed.

6. Each entry contains a sample program using the keyword. Some
of the longer sample programs illustrate a sample run of the
program.

--------- lladlOlhaeli---------

PAGE 6 - 2

MODEL I/III COMPILER BASIC BA.SIC KEYWORDS

------------- TRS-so@ ___________ _

-- FUNCTION --

LEN
Get Length of String

LENfstring)
'string 1 is a string constant or a string variable.

LEN returns the current number of characters in the 'string'.

Examples

PRINT LEN ("MARY")

Prints 4.

PRINT LEN (II MARY HAD A II)

Prints 10.

X = LEN(SENTENCE$)

Stores the number of characters in SENTENCE$ in X.

Sample Program

l ~,0 PH I NT II INPUT lrJOHDB OH f'; BHOF~T SENTENCE 11

11 ((.) INPUT l\·:{5

12,~ PF~INT 11 YOUF;: BENTENCE HAf, 11
; LEN{/.\·$); 11 CHf-1F~f.1CTEHS"

1 :m GOTO 1 G•)(ZI

----------1tad1olhaell----------

PAGE 6 - 3

MODEL I/III COMPILER BASIC BASIC KEYWORDS
-------------TRS-BO@) ___________ _

STATEMENTS

A program is made up of lines; each containing one or more
statements. A statement instructs the computer to do some
operation when that particular line is executed. It may only be
executed when the program is run. For example:

100 STOP

Tells the Computer to stop executing the program when it reaches
line 100.

Statements often include parameters. For example:

100 GOTO 500

Tells the Computer, when it reaches line 100, to execute the
statement on line 500 next.

BASIC statements perform the operations listed below:

VARIABLE DEFINITION

If none of the statements below are used, BASIC will treat all
variables without a type declaration tag as real numbers, and no
arrays will be allowed:

INTEGER - defines variables as integer
STRING - defines variables as string and defines the length

of the string
REAL - defines variables as real
DIM - defines array variables, the length of array

variables, and the length of string variables

The chapter on BASIC Concepts explains how BASIC handles
variable definition.

ASSIGNING VALUES TO VARIABLES

BASIC allows you to assign values to variables directly or by
using data statements:

DATA - stores data in your program so that you may assign

----------1tad1elhaeli----------
PAGE 6 - 4

MODEL I/III COMPILER BASIC BASIC KEYWORDS
------------TRS-so@ ___________ _

it to a variable
LET - assigns a value to a variable (the keyword LET may be

omitted)
READ - reads the data stored in the DATA statement and

assigns it to a variable
RESTORE - restores the pointer which points to a data item

in the DATA statement
SWAP - exchanges the values of vari~bles

PROGRAM FLOW

The Computer will execute each line in the program sequentially,
unless instructed to do otherwise. These statements change the
flow of a program, either by branching within a program or
segmenting a long program into shorter programs:

Branching within a Program

FOR/NEXT - establishes a program loop
GOSUB - transfers program control to the subroutine
GOTO - transfers program control to the specified line

number
IF ... THEN ... ELSE - Performs the specified operation if the

conditions are met
ON ... GOSUB - tests the value and branches to the subroutine
ON ... GOTO - tests the value and branches to the program

line specified
RETURN - returns from the subroutine to the calling program
STOP - stops execution of the program

Segmenting Programs

CALL - transfers control to the subprogram
CHAIN - loads and executes the specified program
COM - stores variables in a common area so they may be

passed to the chained program
EXT - defines the address of an external routine
END - ends compilation of main program
SUB - defines the beginning of the subprogram
SUBEND - returns execution back to the calling program

The chapter on Segmenting Programs explains how to segment
programs.

----------rtadaelhaell----------
PAGE 6 - 5

MODEL I/III COMPILER BASIC BASIC KEYWORDS

INPUT/OUTPUT

Keyboard input statements allow the operator to input (type data
into memory) from the keyboard. To print data, BASIC contains
statements which output to the video display and line printer.
Data is stored on disk by using input/output statements to a
disk file.

Keyboard Input

INPUT - inputs data from the keyboard
INPUT USING - inputs formatted data from the keyboard
LINE INPUT - inputs a line of data from the keyboard

Output to the Display and Line Printer

LPRINT - prints data on the line printer
LPRINT USING - prints data on the line printer using the

specified format
PRINT - prints data on the display
PRINT USING - prints data on the display using the

specified format

Input/Output to a Disk File

CLOSE - closes a disk file
DELETE - deletes a record in a disk file
INPUT - inputs data from a disk file
INPUT USING - inputs data from a disk file using the

specified format
KILL - kills a disk file
LINE INPUT - inputs a line of data from a disk file
OPEN - opens a disk file
PRINT - prints data to a disk file
PRINT USING - prints data to a disk file using the

specified format
READ - reads binary data on a disk file
WRITE - writes binary data to a disk file

The chapter on Data Files explains how to use these statements.

----------rtafl10/haell----------

PAGE 6 - 6

MODEL I/III COMPILER BASIC BASIC KEYWORDS
-------------TRS-BO@ ___________ _

DEBUGGING

These statements build an error trapping routine, which may be
used in debugging a program or handling errors from a computer
operator:

ERROR - simulates the specified error
ON BREAK GOTO - enables a <BREAK> handling routine
ON ERROR GOTO - enables an error trapping routine
RESET BREAK - disables the <BREAK> handling routine
RESET ERROR - disables the error trapping routine
RESET GOSUB - clears all the return addresses
RESUME - terminates the error handling routine

SPECIAL STATEMENTS

DEF - defines a function
RANDOMIZE - reseeds the random generator
REM - allows insertion of programmer's comment line
SYSTEM - returns the system to TRSDOS

-----------rtafl1elhaeli-----------
PAGE 6 - 7

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-----------TRS-ao@llllll!il!ilill _________ _

FUNCTIONS

Functions are built-in subroutines. They may only be used as
part of a statement.

Most BASIC functions perform certain routines to return numeric
or string data. Special print functions are used to control the
video display.

NUMERIC FUNCTIONS

All numeric functions return a number and may be used in a
statement as numeric data. For example, the function:

SQR{9)

returns the number 3 (the square root of 9). This function may
be used in a statement as numeric data. For example:

X = SQR(9)

assigns the square root of 9 to X.

Numeric functions perform these operations:

Arithmetic Operations

ABS - computes the absolute value
SGN - computes the sign (positive, negative, zero)
SQR - computes the square root

Converting Data to a Different Data Type

CVD - converts
CVI - converts
HVL - converts
INT - converts
VAL - converts

integer data to a real number
real data to an integer

a hexadecimal string to an integer
real data to a whole number
numeric characters in a string to a number

----------~adaelhae~---------
PAGE 6 - 8

MODEL I/III COMPILER BASIC BASIC KEYWORDS

------------TRS-ao@ ___________ _

Computations on Strings

ASC - returns the ASCII code of a string character
DIG - computes the length of numeric field in a string
LEN - computes the length of a string
POS - searches for a substring within a string

Bit Manipulation

AND - calculates the logical AND
OR - calculates the logical OR
XOR - calculates the exclusive XOR

Trigonometric Calculations

ATN - computes the arctangent
COS - computes the cosine
EXP - computes the natural exponential
EXPl0 - computes the base 10 exponential
LOG - computes the natural logarithm
LOGl0 - computes the base 10 logarithm
SIN - computes the sine
TAN - computes the tangent

Special System Information

CRTX - returns the row position of the cursor
CRTY - returns the column position of the cursor
ERR - returns the error code
EOF - notifies if the end of a disk file is reached
RND - returns a pseudo-random number

STRING FUNCTIONS

All string functions return a string and may be used in a
statement as string data. For example, the function:

STRING$(5,"*")

returns the string***** (5 asterisks). This function may be

----------lladlOlhaeli------------

PAGE 6 - 9

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-------------TRs-so@ ___________ _

used in a statement as string data. For example:

A$= STRING$(5,"*")

assigns***** to A$.

String functions perform these operations:

Converting Numbers to String

CHR$ - returns the one-character string of the ASCII code
HEX$ - converts an integer to a hexadecimal string
STR$ - converts numeric data to string

Inputting a String

INKEY$ - gets a keyboard character, if it has been pressed
INPUT$ - inputs a character string from the keyboard

Manipulating a String

SEG$ - returns a segment of a string
STRING$ - returns a string of characters

Special System Information

DATE$ - returns the date which was set when initializing
the system

TIME$ - returns the time recorded in the system's clock
CRTI$ - returns the characters from a specified position

the video display

SPECIAL PRINT FUNCTIONS

on

Unlike numeric and string functions, the special print functions
do not return data. Instead, they are used to control the video
display. For example:

CR'r (5, 7)

----------rtad1e/haeli----------

PAGE 6 - 10

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-------------TRS-BO ®------------

Moves the cursor to the row 5, column 7 position on the video
displaye This function may only be used in a PRINT statement.
For example:

PRINT CRT(5,7);"HEADING"

Prints HEADING at the row 5, column 7 position on the video
display.

These are the special print functions:

CRT - moves the cursor to a specified row and column
position

CRTR - moves the cursor relative to its current row and
column position

CRTG - moves the cursor to a specified position and prints
a string in the graphics mode

TAB - tabs the cursor to a specified column position

--------- ft IO e~--------------
PAGE 6 - 11

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-- FUNCTION --

ABS
Compute Absolute Value

ABS(number)
'number' is any numeric expression

ABS returns the absolute value of the 'number'. The absolute
value is the magnitude of the number without respect to its
sign ..

ABS returns the same type of value (integer or real) as number.

Examples

PRINT ABS(3)

Prints 3 ..

PRINT ABS(-3)

Prints 3 ..

PRINT ABS(0)

Prints 0 ..

X = ABS(Y + 3X)

The absolute value of Y + 3X is assigned to X.

IF ABS(X) < lE-6 THEN PRINT "TOO SMALL"

TOO SMALL is printed only if the absolute value of Xis less
than the indicated number.

PAGE 6 - 12

MODEL I/III COMPILER BASIC BASIC KEYWORDS
-------------TRs ... ao@ ___________ _

Sample Program

80 REM *** SAMPLE PROGRAM DEMONSTRATING ABS***
90 liEM

H%1 INTEGER A-.. z
110 PRINT CHR$(28);CHR$(31);
120 PRINT "GUESS MY NUMBER";
130 X = RND(0) * 20 + 1
140 INPUT Y: IF X = Y THEN 170
151.zj Pl~INT 11 0FF BY"; ABB(X···-Y); 11

.. GUESS AGAIN 11
;

160 GOTO 1 L1,0

170 PRINT "RIGHT! GUESS MY NEXT NUMBER";
180 GOTO 1]0

GUESS MY NUMBER? 10
OFF BY 9 .. GUEBS AGAIN? 1
RIGHT! GUESS MY NEXT NUMBER? 8
OFF BY 2. GUESS AGAIN? 6
RIGHT! GUESS MY NEXT NUMBER? 5
OFF BY
OFF BY
RIGHT!

2. GUESS AGAIN? 3
4. GUESS AGAIN? 7

GUESS MY NEXT NUMBER?

----------lladlOlhaeli--------
PAGE 6 - 13

MODEL I/III COMPILER BASIC BASIC KEYWORDS

------------TRS-ao@ ___________ __

-- FUNCTION --

AND
Calculate Logical AND

AND(number, number)
'number' is any number in the range of

-32768 to 32767.

AND is a logical operation performed on the binary
representations of the two 'numbers'. AND compares each bit of
the two numbers. A binary 1 is returned if both bits are al; a
0 is returned in any other case:

·First
Number

1
1
0
0

Second
Number

1
0
1
0

Bit
Returned

1
0
0
0

If 'number' is real, AND will convert it to an
integer. The binary number that AND returns is always
expressed as an integer.

Note: Also see OR and XOR.

Examples

PRINT AND(Sl, 15)

Prints a 3. The operation is performed on the binary
representation of the two arguments:

Integer
51
15

3

Binary
Representation

00110011
00001111

00000011

---------rtad1e ae~-----------
PAGE 6 - 14

MODEL I/III COMPILER BASIC BASIC KEYWORDS

A= AND(Sl,15)

Performs the AND operation and assigns the value of 3 to A.

The two examples below illustrate a common use of AND. All
other bits can be masked out to see if one particular bit is
"on" (1) :

IF AND(l28, 64) = 64 PRINT "TRUE" ELSE PRINT "FALSE"

Prints "FALSE".

IF AND(96, 64) = 64 PRINT "TRUE" ELSE PRINT "FALSE"

Prints "TRUE".

Sample Program

10 REM *** AND FUNCTION***
20 INPUT PROMPT="ENTER AN INTEGER VALUE (-32768 TO 32767) "; X%
30 PRINT "LEAST SIGNIFICANT BYTE IS"; ANDCX%,&00FF)
40 GOTO 20

*l~U
ENTER AN INTEGER VALUE (-.. 32768 TO 32767) 2:.7::2L:7
LEAST SIGNIFICANT BYTE IS 211
ENTER AN INTEGER VALUE (-·32768 TO 3271:.>7) -·32765
LEI\ST SI(:iNIFI Cf~NT BYTE IS 3
ENTER AN INTEGER VALUE (-32768 TO 32767) a

----------- llad1e lhaeli----------
PAGE 6 - 15

MODEL I/III COMPILER BASIC BASIC KEYWORDS
------------TRs-eo@ __________ _

-- FUNCTION --

ASC
Get ASCII Code

ASC returns the ASCII code of the first character in the
'string'.

Examples

PRINT ASC ("A")
PRINT ASC("AB")

Both lines will print 65, the ASCII code for "A".

X = ASC(B$)

Assigns the ASCII code for B$ to X.

Sample Program

100 REM *** SAMPLE PROGRAM DEMONSTRATING ASC ***
110 REM
120 REM *** CHANGING THE OUTPUT OF ALL THE CHARACTERS***
130 REM *** ON YOUR KEYBOARD***
140 REM
150 PRINT "TYPE THE CHARACTER YOU WANT ALL YOUR KEYS TO REPRESENT"
160 INPUT f3$

---------nadaelhaeli---------
PAGE 6 - 16

MODEL I/III COMPILER BASIC BASIC KEYWORDS

170 PRINT "NOW TYPE ANY CHARACTER ON YOUR KEYBOARD"
180 PRINT "NOTICE THAT THEY HAVE ALL BEEN CHANGED"
190 PRINT "YOU WILL HAVE TO PRESS '0' TO GET OUT OF THIS PROGRAM"
200 C$:::: IN~\EY$ ~ IF C$::::: " 11 THEN 2t~0
210 IF C~; :::: 11 0 11 THEN 250
220 C$ = CHR$(ASC(B$))
230 PRINT C$;
:ZL~0 GOTO :;::00
2::,0 STOP

·*·RU
TYPE THE CHARACTER YOU WANT ALL YOUR KEYS TO REPRESENT
? y
NOW TYPE ANY CHARACTER ON YOUR KEYBOARD
NOTICE THAT THEY HAVE ALL BEEN CHANGED
YOU WILL HAVE TO PRESS '0' TO GET OUT OF THIS PROGRAM
YYYYYYYYYYYYYYSTOP LINE 250
1€·"

---------- lladae ell------------
PAGE 6 - 17

MODEL I/III COMPILER BASIC BASIC KEYWORDS @ _____________ _

-- FUNCTION --

ATN
Compute Arctangent

ATNfnumber)
'number' is a numeric expression

ATN returns the angle of the 'number'.
tangent. The angle will be in radians.
multiply ATN(X) by 57.295779513082.

The result is always a real number.

Examples

X = ATN(Y/3)

The number is the
To convert to degrees,

Assigns the value of the arctangent of Y/3 to X.

PRINT ATN(l.0023) * 57.2

Prints 44.9905.

R = N * ATN(-20 * F2/Fl)

Assigns the indicated value to R.

Note: Trigonometric functions are not loaded when you load the
BASIC Compiler; they are loaded upon demand. This might cause a
slight delay when using these functions, since they must be
loaded into the system first.

Sample Program

----------1tad1elhaell----------

PAGE 6 - 18

MODEL I/III COMPILER BASIC BASIC KEYWORDS

80 REM *** SAMPLE PROGRAM DEMONSTRATING ATN ***
90 HEM

H%1 PFUNT II INPUT TANGENT 11

110 INPUT T
120 PRINT 11 ANGLE 18 11

; ATN(T) * 57.29578
130 GOTO tv.m

-~H~U
INPUT TANGENT
? 15
ANGLE IS 86.1859
INPUT TANGENT
? :~
f\NGL.E H:) 7 l., :::\6~H
INPUT T /:..NGENT
? "~::i6 7
ANGLE IS 29.5532
INPUT TANGENT
'? "

-------- lladae

PAGE 6 - 19

®

MODEL I/III COMPILER BASIC

-- STATEMENT -

CALL
Execute External Subroutine

CALL "subname"; data list
'subname' is a 1-6 character string constant
'data list' consists of any of the following

separated by commas:
numeric expression
string variable
string constant
subscripted variable

BASIC KEYWORDS

A CALL statement instructs the computer to run a subprogram. In
addition, it sends the list of data that you specify to the
subprogram .. The subprogram performs its operations on this data
and sends the resulting values back to the main program.

A subprogram, like an internal subroutine, is called from the
main program or another subprogram, executed, and returns to the
line after the CALL. It m~y be as many lines as you want and
may have its own local variables, independent of the main
program.

A subprogram has the added flexibility of performing the same
operations on whatever data is sent to it by the main program.
This is especially helpful if you are performing the same
complicated computations with different variables repeatedly in
different parts of your program.

CALL will not "Load" or .. Old" a subprogram. All subprograms
must be Loaded or Appended into memory before the main program
is executed.

CALL may also be used to call an external machine language
routine. To do this, you must have an EXT statement in your
program defining the memory address of the routine. See EXT and
the chapter on Segmenting Programs.

®

PAGE 6 - 20

MODEL I/III COMPILER BASIC BASIC KEYWORDS

Examples

If you have a subprogram beginning with the statement:

SUB "ADD"; X, Y$

The following CALL statements could be used:

CALL "ADD"; 5, "HEADS"

Executes the subprogram named "ADD". This statement also passes
the data 5 and "HEADS" to the subprogram. The subprogram
assigns 5 to X and "HEADS" to Y$. It then performs its routine
on this data ..

CALL "ADD"; A, B$

This statement also executes the subprogram "ADD". It passes
the data A and B$ to the subprogram. The subprogram assigns the
value of A to X and B$ to Y$, performs its operations on X and
Y$, and sends the resulting values back to the main program as A
and B$.

If a subprogram begins with the statement:

SUB "CHART " ; M () , N $ (,

Then:

CALL "CHART " ; C () , D $ (,)

Executes the subprogram "CHART" sending all the data in the
one-dimensional array C and the two-dimensional array D$ to the
subprogram. The subprogram performs its routine on the data and
sends the resulting data back to the main program.

CALL "CHART"; SALES () , ITEMS$ (,

Executes the same subprogram CHART, which will perform the same
routine on all the data in the SALES and ITEMS$ arrays and send
the resulting data back to the main program.

Note: For information on how to use subprograms, see the
section on Segmenting Programs. Also see END, SUB, and SUBEND.

---------1tad1elhaeli--------
PAGE 6 - 21

MODEL I/III COMPILER BASIC BASIC KEYWORDS

Sample Programs

80 REM *** SAMPLE PROGRAM DEMONSTRATING CALL***
9VJ REM

100 X = 2: Y = 3: Z = 4
110 C/.\LL II SUBPROG 11

; X
12C1 CALL II SUBPROG 11

; Y
130 cl,LL II sue.PrWG 11

; z
lA0 PRINT X, Y, Z
1 '.5ft.1 E:ND
160 SUB 11 SUBPROG"; A
1 ·7vJ A ::: A * ~~

180 SUP.END

~-,:~u
Lj.

STOP L. I NE l ~:50
8

80 REM *** SAMPLE PROGRAM #2 DEMONSTRATING CALL***
90 REM

100 PRINT 11 INPUT WEEKLY GROCERY EXPENSES 11

110 INPUT F
120 CALL 11 ANNUAL 11

; F
130 PRINT "INPUT WEEKLY GASOLINE EXPENSES 11

1L~0 INPUT G
150 CALL 11 ANNUAL 11

; G
160 PRINT 11 ANNUAL EXPENSES ARE---- 11

170 PRINT F; "FOR GROCERIES 11
, G; 11 FOR GASOLINE 11

1 fl0 END
190 SUB 11 ANNUAL 11

; X
200 X == X * 52
210 SUBEND

*RU
INPUT WEEKLY GROCERY EXPENSES
? 24
INPUT WEEKLY GASOLINE EXPENSES
? t ~1
ANNUAL EXPENSES ARE

1248 FOR GROCERIES
STOP LINE 180

----------lladme

780 FOR GASOLINE

®

PAGE 6 - 22

MODEL I/III COMPILER BASIC BASIC KEYWORDS

80 REM *** SAMPLE PROGRAM #3 DEMONSTRATING CALL***
90 REM

100 DIM U(12)
110 DIM 0(12)
120 FOR I= 1 TO 12: READ U(I) : NEXT I
130 FOR I= 1 TO 12: READ 0(1) : NEXT I
140 CALL "CHART"; "UTILITIES", U()
150 CALL "CHART"; "OFFICE SUPPLIES", 0()
160 DATA 150,175,100,120,130,170,145,80,90,145,135,145
170 DATA 100,75,65,93,104,120,110,92,88,90,70,60
180 END
1 9(1 SUB II CHART 11

; A$ 'J B ()
200 DIM C~~ (l :2)
210 PRINT CHR$(28); CHR$(31)
:220 PRINT CFH(0, 15); "EXPENSES 11

; A$
230 PRINT
240 FOR I= 1 TO 12
250 READ C$(I): X = B(I)/3
260 PRINT C$(I), II

11
;

270 PRINT STRING$(X, 11 X")
280 NEXT I
290 PRINT CRT (l 5, 0); 11 PRESS <ENTER> 11

;

300 AA$= INPUT$(1)
3:1.0 DATA II J'AN"' II FEB"'" MAR 11

' II APR 11
' II MAY"' II JUN 11

'
11 '-TUL II' II AUG"' II SEP 11

320 DATA "OCT 11
,

11 NOV 11 ,"DEC 11

330 SUBEND

®

PAGE 6 - 23

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-------------TRS-BO@) ___________ _

-- STATEMENT -

CHAIN
Load and Execute Next Program

CHAIN "filespec"
'filespec' is a string constant or a string variable

representing a TRSDOS file specification

CHAIN loads a program stored on disk into memory and executes
it. When the chained program is loaded, the resident program is
deleted from memory.

Note: Also see COM and the chapter on Segmenting Programs.

Examples

CHAIN 11 NEXT/BAS II

Loads the program NEXT/BAS and executes it.

CHAIN"PROG2/CMP:l"

Loads the program PROG2/CMP from the diskette in drive 1 and
executes it.

CHAIN A$

Loads the filespec A$ and executes it.

Sample Program

10 REM *** PROG2/BAS MUST FIRST BE SAVED ON DISK***
20 PRINT "ENDING PROGRAM 1 - BEGINNING PROGRAM 2"
30 CHAIN "PROG2/BAS"

----------llad1elhaell----------

PAGE 6 - 24

MODEL I/III COMPILER BASIC

-- FUNCTION -

CHR$
Get Character for ASCII or Control Code

CHR$ (number)

BASIC KEYWORDS

'number' is a numeric expression in the range
-32768 to 32767.

CHR$ is the inverse of the ASC function. By specifying an ASCII
code, CHR$ returns the code's corresponding one-character
string. This one-character string may either be one of the keys
on your keyboard or a control character.

Note: To produce graphics characters, see CRTG

Examples

PRINT CHR$(35)

Prints a# on the display.

P$ = CHR$(T)

The number represented by Tis converted into its ASCII
character equivalent assigned to P$.

PRINT CHR$(126)

Prints the symbol for a space(~). Notice that this is not a
keyboard symbol.

A$= A$ & CHR$(I)

The character whose ASCII code is I is added to the end of A$.

Sample Programs

®

PAGE 6 - 25

MODEL I/III COMPILER BASIC

80 REM *** SAMPLE PROGRAM #1 FOR CHRS ***
90 REM

100 PRINT CHR$(28); CHR$(31)
110 PRINT "TYPE IN THE CODE (0-127)"
120 INPUT C

BASIC KEYWORDS

130 PRINT CHRS(C); " JUST PRINTED THE CODE"; C
140 GOTO 110

TYPE IN THE CODE (0-127)
? 35
JUST PRINTED THE CODE 35
TYPE IN THE CODE (0-127)
? 48
0 JUST PRINTED THE CODE 48
TYPE IN THE CODE (0-127)
?

80 REM *** SAMPLE PROGRAM #2 DEMONSTRATING CHR$ ***
90 REM

100 PRINT CHR$(28); CHR$(31)
110 PRINT "'THIS IS THE LINE THAT WILL SLOWLY GET ERASED";
120 FOR I= 1 TO 500 NEXT I 'INITIAL DELAY
130 FOR I= 1 TO 400: NEXT I :
140 PRINT CHR$(8);
150 GOTO 130

THIS IS THE LINE THAT WILL. SLOWLY GET ERAf~ED

THIS IS THE LINE THAT WILL SLOWLY GE

THIS IS THE LINE THAT WILL. SLOWLY

THIS IS THE LINE THAT w

THIS IS THE L

THIS I

®

PAGE 6 - 26

MODEL I/III COMPILER BASIC BASIC KEYWORDS
--------------TRS-BO@ ___________ _

-- STATEMENT --

CLOSE
Close Disk File

CLOSE #file-unit
'file-unit' is a numeric expression specifying

which file is to be closed. If 'file~unit' is
omitted~ all open files are closed. If a
specified file unit is not open, an error
occurs.

This statement closes access to the file or files referenced by
'file-unit', assigned when the file is opened.

Examples

CLOSE #1

Closes file-unit 1.

CLOSE #START+ NCRMT

Close file-unit (START+ NCRMT).

CLOSE

Closes all open file-units.

Sample Program

See the chapter on data files.

---------- II 18

PAGE 6 - 27

MODEL I/III COMPILER BASIC

-- STATEMENT -

COM
Allocate Common Variable Area

COM variable list

BASIC KEYWORDS

'variable list' is one or more variables s~parated
by commas. Each variable may be a:

numeric variable
string variable
numeric array
string array

You may use COM to pass one or more variables to the ~ext
program. COM allocates a common area in the program for
variables so that they may be passed to the next program.

Note: Also see CHAIN and the chapter on Segmenting Programs.

Program 1 Program 2

data data COM COM

}

0

CHAIN
~

~

Examples

COM C, D$

Allocates a common area for storing the variables

PAGE 6 - 28

MODEL I/III COMPILER BASIC BASIC KEYWORDS

C and D$ so they may be accessed by the next program.

COM B$ (50)

Allocates a common area for storing array B$ with 51 elements
(0-50) so that the array may be accessed by the next program.

COM A(l0,10)

Allocates a common storage area for the two dimensional array A.

Sample Program

l ,~ REM
20 !'.~EM
30 F~EM

'+'~ REM
~::,0 F<EM

*** PROG2/BAS MUST FIRST BE SAVED ON DISK***

*** PROG2/BAS WILL RETAIN WHATEVER VALUES***
*** THIS PROGRAM SETS FOR A$ AND 8

6,~ COl"'I t-\·$, B
70 REM *** PROG2/BAS MUST HAVE AN IDENTICAL COM LINE***
80 PRINT "INPUT A NAME AND A NUMBER"
c_n~ INPUT i'\$ '.1 B

100 CHAIN "PROG2/BAS"

---------- ft IO

PAGE 6 - 29

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-------------TRs-ao@ ___________ _

-- FUNCTION --

cos
Compute Cosine

COS(number)
'number' is a numeric expression.

COS returns the cosine of the 'number'. The 'number' should be
an angle, which must be given in radians. When the 'number' is
in degrees, use COS('number' * .01745329251993).

The result is always a real number.

Examples

Y = COS(X)

Assigns the value of COS(X) to Y.

Y = COS(X * .01745329251994)

If Xis an angle in degrees, the above line will give its
cosine.

PRINT COS(5.8) - COS(85 * .42)

Prints the difference of the two cosines.

G2 = Gl * ((COS(A)) * 15)

Computes the indicated cosine and stores it in G2.

Note: Trigonom~tric functions are not loaded when you load the
BASIC Compiler; they are loaded upon demand. This might cause a
slight delay when using these functions, since they must be
loaded into the system first.

------------ ftad1e ae~-----------
PAGE 6 - 30

MODEL I/III COMPILER BASIC BASIC KEYWORDS
-------------TRS-BO@ ___________ _

Sample Program

8(2) REM -~: .. ¾·-J;:· t>AMPLE PFWGRAM DEMONSTR.t~T I NG COS ·!HrHit·

90 REM
100 PRINT "INPUT ANGLE IN DEGREES"
110 INPUT A
120 A= A/ 57.2957795
1:30 PRINT II COSINE IS 11

; cos< A)
1 Lt0 GOTO 100

*liU
INPUT ANGLE IN DEGREES
? :30
COSINE IS 0u866025
INPUT ANGLE IN DEGREES

COSINE IS 0u707107
INPUT ANGLE IN DEGREES
? a

----------lladlOlhaeli----------
PAGE 6 - 31

MODEL I/III COMPILER BASIC
BASIC KEYWORDS

-- FUNCTION --

CRT
Position Cursor

CRT(row, column)
'row' is a number between O and 15 .. If outside

that range BASIC performs a MOD 16 ..
'column• is a number between O and 63. If outside

that range, BASIC performs a MOD.64 ..

CRT, used in a PRINT statement, positions the cursor at the
'row' and 'column' specified on the video display. It may only
be used in a PRINT statement.

Note: The Model I/III video display consists of 16 rows (0
to 15) and 64 columns (0 to 63):

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 3 6 g 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

-

'row' and 'column' refer to a row and column on the video

----------rtad1elllaell----------
PAGE 6 - 32

MODEL I/III COMPILER BASIC BASIC KEYWORDS

display.

Examples:

PRINT CRT(0,63);"& 11

Positions the cursor at the top right hand corner and prints
"&II"

PRINT CRT(15, 0);"THIS IS LOCATION 15, 0"

Positions the cursor at the bottom left-hand corner of the
display and prints the message beginning at that position.

PRINT CRT(17, 0);"###"

Positions the cursor at the beginning of row 1 in position 1,0
and prints###. (Since 17 is outside the range 0-15, BASIC
performs a MOD 16 and reduces the 17 to a 1.)

Sample Program

10 PRINT CH~--<~> (2B) ; CHR~d 31)
:~:'.0 PRINT !1 WHAT J ('"' .,::> YOUR LAST I\IAME 11

3C1 PRINT CRT(2rs0);
40 INPUT A$
:,(ZI Pr·UNT CRT (6, 0) ; 11 YOUR FIRST NAME 11

60 PF~ I I\IT CRT (8, 0) ;
70 INPUT B$
Btll PRINT CRT(12,10); 11 THANI·\ YOU, II • 8$; II II m A$; II I II , ,

---------- ltadmelhaeli-----------
PAGE 6 - 33

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-------------TRS-eo@ ___________ _

lr-JHrYf IS YOUR LAST NI-\ME
? cox

YOUR FIRST NAME

? HON

THANK YOU, RON cox~
BTOP LINE BIB
·ls:·

----------1tad1elhaeli----------
PAGE 6 - 34

MODEL I/III COMPILER BASIC BASIC KEYWORDS
------------TRS-BO@ ___________ _

-- FUNCrrION --

CRTG
Print in Graphics Mode

CRTG (row, column, string)
'row' is a whole number in the range of [0,32767].

If larger than 15, BASIC reduces it by MOD 16.
'column' is a whole number in the range of

[0,32767]. If larger than 63, BASIC reduces it
by MOD 64.

'string' is a string constant or a string variable.

CRTG used in a PRINT statement, prints 'string' in the graphics
mode. The 'string' is printed as follows:

1. The first character of the string is printed at the
'row', and 'column' position specified.

2. The cursor is then advanced to the next column position
on the same row. If the next position is 64, the cursor wraps
the display to column O of the next row. If the next row is 16,
the cursor wraps the display to row 0.

3. The next character in the string, if there is one, is
then printed at the cursor position. Steps 2 and 3 are then
repeated.

Note: Model III users have the capability to print special
characters, CHR$(192-255), but the Model I will not print any
but regular graphics. The switch to swap space compression
characters out and special characters in must be activated for
special characters to be printed. PRINT CHR$(21) will set or
reset the switch. The switch will stay set or reset, even if
you leave RSBASIC.

The 'string' may contain up to 255 characters which may
printed in graphics mode. The characters are listed in
Appendix. The first 32 can only be accessed by a POKE.
rest are alphanumeric or control characters or special
characters, depending which switch is on.

be
the

The

As shown in the listing, all of the alphanumeric characters may

---------1tad10/haeli---------

PAGE 6 - 35

MODEL I/III COMPILER BASIC BASIC KEYWORDS

be referenced either by the keyboard character itself, or by the
character's ASCII code. For example:

A$ = "M"
A$ = CHR $ (7 7)

both assign the character M to A$.

Special and regular graphics characters may be referenced by the
character's ASCII code:

A$= CHR$(170)

assigns the regular graphics character which looks like a long
thin column to A$.

For Model III users:

10 PRINT CHR$(21);
20 B$ = CHR$(196)
30 PRINT CRTG(8,32,B$)

will print a smiling face in the center of the screen.

The easiest way to print graphics images on the display is to
build a string of graphics characters. For example:

10 A$= CHR$(140)
20 B$ = CHR$(157)
30 C$ = A$&B$&A$&B$&A$&B$&A$&B$&AB
40 PRINT CHR$(28); CHR$(31);
50 PRINT CRTG(0,0,C$)

Prints an image which looks like a railroad track at the top
left hand corner of the screen.

The sample programs for CRTG illustrate different ways of
printing in the graphics mode.

Note: Also see CRT, PRINT, and CHR$

Examples

PRINT CRTG(l5,0,C$)

Prints the contents of string C$ at the bottom left hand corner
of the display.

----------llad1elhaell----------
PAGE 6 - 36

MODEL I/III COMPILER BASIC BASIC KEYWORDS
-------------TRS-eo@ ___________ _

A$= CHR$(132)
PRINT CRTG(8,32,A$)

Prints a tiny square in the center of the display.

PRINT CRTG (8, 3 2 , "X")

Prints an X in the center of the display.

Sample Programs

1,~ REM
20 F~EM

*** SAMPLE PROGRAM #1 DEMONSTRATING CRTG ***
30 ON BREAK GOTO 170
40 PRINT CHRS(28); CHRSC31)
:::,0 PRINT II HIT <BREA~<> TO [iTOP 11

60 PRINT 11 SWITCHING TO CHARACTER MODE 11

70 PRINT CHRS(21)
80 CS - "CLUBS " & CHR$(195)
90 D$ = "DIAMONDS 11 & CHR$(194)

100 H$ = "HEARTS " & CHR$(193)
110 8$ = ~SPADES " & CHR$(192)
120 PRINT CRTGC6,10,C$l
130 PRINT CRTG(7,10,D$)
140 PRINT CRTG<B,10,HS)
150 PRINT CRTG(9,10,S$)
160 GOTO 160
170 PRINT "SWITCHING BACK TO NORMAL MODE"
180 PRINT CHR$(21)
190 STOP

--------lladaelhaell---------
PAGE 6 - 37

MODEL I/III COMPILER BASIC BASIC KEYWORDS

10 REM *** SAMPLE PROGRAM #2 DEMONSTRATING CRTG ***
20 REM
30 PR I NT II H I T < B RE /~I·\> TO STOP 11

40 ON BREAK GOTO 170
50 PRINT CHR$(28); CHR$(31)
60 PFHNT "SWITCHING TO CH/.1Rt~CTER MODE"
70 PRINT CHR$(21)
80 A$ - CHR$(196)
90 8$ = CHR$(197)

100 C$ = CHR$(225) & CHR$(234) & CHR$C236)
110 D~> :::: CHRtd 198) & 11 11 & CHR$ (199)
120 PRINT CRTG(6,30,A$)
130 PRINT CRTGC7,29,C$)
140 PRINT CRTGCB,29,0$)
150 FOR I= 1 TO 100: NEXT I
160 SWAP A$, 8$: GOTO 120
17(1 PFHNT "SWITCHING BAO-.:: TO NORMAL MODE 11

180 PRINT CHR$(21)
19fi.) STOP

10 REM
20 REM

*** SAMPLE PROGRAM #3 DEMONSTRATING CRTG ***

30 ON BREAK GOTO 180
40 PRINT CHR$(28); CHR$(31)
~.0 PRINT II HIT <BF~EA~G- TO STOP 11

,

60 PRINT "SWITCHING TO CHARACTER MODE"
70 PFHNT TI\B(20); 11 POPUL...ATION EXPLOSION ' 1111

80 PRINT CHR$(21)
90 A$= CHR$(253)

100 I ::::: J
110 FOR J = 1 TO 60 STEP 15-I
120 PRINT CRTG(I,J,A$)
1.30 NEXT J
1 i.~(i.'j I ::::: I + 1
150 IF I> 14 THEN GOTO 170
160 GOTO 110
170 GOTO 17C1
100 PRINT II SltJITCHI NG BAO\ TO NORMAL MODE 11

190 PRINT CHR$(21)
200 STOP

---------ftad1e/haell---------

PAGE 6 - 38

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-------------TRS-BO@ ------------

-- FUNCTION --

CRTI$
Read Video Display

CRTI$(row, column, length)
'row• is a row 0n the video display from Oto 15
'column' is a column on the video display from

0 to 63
'length' is the number of characters you want

read into the string.

CRTI$ reads the characters on the video display in th~ area of
the display that you specify. It returns a string of characters
beginning on 'row' and 'column' with the length that you
specify.

Note: See CRT for an illustration of row and column positions.

Examples

If, immediately before executing the statements below, this is
printed on your video display beginning at position row 1,
column 0:

(c) 1979 by Ryan-McFarland Corp. All rights reserved.

Then:

PRINT CRTI$(1,0,10)

Prints " (c) 19 7 9 b"

A$= CRTI$(1,0,54)

Stores "(c) 1979 by Ryan-McFarland Corp. All rights reserved."
in A$.

PRINT CRTI$(1,12,42)

Prints "Ryan-McFarland Corp. All rights reserved."

--------~ad ll--------------
PAGE 6 - 39

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-------------TRs-so@ ___________ _

Sample Programs

60 REM *** SAMPLE PROGRAM #1 DEMONSTRATING CRT!$***
70 REM
80 REM *** PRINT VIDEO DISPLAY TO THE LINE PRINTER***
90 REM

100 DIM A~i-t:A(16)
110 FOR Z = 0 TO 15
120 A$(2) = CRTIS(Z,0,64)
130 LPRINT A$(Z)
l Lt0 NE:::X-T Z

80 REM *** SAMPLE PROGRAM DEMONSTRATING CRT!$***
90 REM

100 PRINT CHRS(28); CHRS(31)
110 PRINT "TYPE IN ONE LINE OF TEXT"
120 PRINT CRT(3,0);
130 A$= INPUT$(64)
140 PRINT:PRINT:PRINT
150 PRINT "THIS IS THE LINE YOU TYPED: "
160 PRINT: PRINT CRTI$(3,0,64)
170 GOTO 170

TYPE IN ONE LINE OF TEXT

I WILL PROCEED TO TYPE IN ONE COMPLETE LINE OF TEXT, IF POSSIBLE

THIS IS THE LINE YOU TYPED~

I WILL PROCEED TO TYPE IN ONE COMPLETE LINE OF TEXT, IF POSSIBLE

----------ltadaelhaeli----------
PAGE 6 - 40

MOD.EL I/III COMPILER BASIC BASIC KEYWORDS

-------------TRS-80 ®------------

80 REM *** SAMPLE PROGRAM #2 DEMONSTRATING CRT!$***
90 REM

1 (2)0 I NT EGER AM•M Z
110 DIM V$64(l6)
120 PRINT CHR$(28); CHR$C31)
130 PRINT "TYPE IN AS MUCH AS YOU WISH--PRESS <ENTER> TO STORE DISPLAY"
11.,.0 A1> :::: I Nb:t:::Y1i: IF /.\~i> < 11 11 THEN 1 '+0
150 PRINT CHR$(28); CHR$(31); A$;
160 A$= INKEY$: IF A$< 11 11 THEN 190
170 PRINT A$;
180 GOTO 160
190 REM *** CHECK FOR VALID KEY***
200 IF A$= CHR$(8) THEN 170
210 IF A$= CHR$(13) THEN 230
220 GOTO 160
230 REM *** READ VIDEO***
240 ROW= CRTX: COL= CRTY
250 FOR LN = 0 TO ROW - 1
260 V$(LN) = CRTI$CLN,0,64)
::?70 NEXT L.N
280 V$(ROW) = CRTI$(ROw,0~coL)
790 PRINT CHR$(28); CHR$(31); 11 TEXT STORED--PRESS <ENTER> TO SEE IT 11

300 A$= INPUT$(1)
310 FOR LN = 0 TO ROW
320 PRINT V$(LN);
330 NEXT L.N

---------ft 18 e~------------
PAGE 6 - 41

MODEL I/III COMPILER BASIC BASIC KEYWORDS

------------- TRS-so@ ___________ _

-- FUNCTION --

CRTR
Move Cursor

CRTR(row,column)
'row' is a number in the range of [0,32767]
'column' is a number in the range of [0,32767]

CRTR may only be used in a PRINT statement. PRINT CRTR makes
the cursor move in relation to its present position on the video
screen .. If this causes the cursor to "move off the display",
the cursor will wrap around.

CRTR works by performing this calculation:

the number of 'rows' and 'columns' you specify
+ the cursor's present row and column position

the cursor's new row and column position

If the sum of the rows is greater than 15, BASIC will perform a
MOD 16 .. If the sum of the columns is greater than 63, BASIC
will perform a MOD 64.

For example, if the cursor is presently at row 10, column 50,
and you execute a CRTR(l0,20) statement, BASIC will compute the
sum of the two rows and the two columns:

CRTR specification:
Present cursor position:

Totals:

Row
10

+10

20

Column
20

+ 50

70

The results are both outside the range of the video screen.
BASIC will then perform a MOD 16 on the row total (20 / 16 = 1
remainder 4) and a MOD 64 on the column total (70 / 64 = 1
remainder 6) .. The result of this is row 4, column 6.

Note: See CRT for an illustration of row and column positions ..

--------- ft le

PAGE 6 - 42

MODEL I/III COMPILER BASIC BASIC KEYWORDS @ ______________ _

Examples

If the cursor is currently at row 10, column 50 ---

PRINT CRTR(2, 10)

causes the cursor to more to row 12, column 60.

PRINT CRTR(2, lO);"Xvu

causes the cursor to move to row 12, column 60. It prints the X
at the next column position -- row 12, column 61.

PRINT CRrrR(6, 40); "****"

causes the cursor to wrap around to row 0, column 26. The****
is printed at beginning at the next column position -- row O,
column 27.

Sample Program

80
90

H'HZ)
110
120
130
140
1 :)0

REM
REM

*** SAMPLE PROGRAM DEMONSTRATING CRTR ***
PRINT CHRS(28); CHRSC31)
PRINT CRT(0,0);"X";
PRINT CRTR(1,0);"X";
FOR I= 1 TO 50: REM
NEXT I : REM
GOTO 120

THESE TWO LINES SET A PAUSE
AFTER EACH XIS PRINTED***

®

PAGE 6 - 43

-~··*·~

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-------------TRS-eo@ ___________ _

CRTX
CR'rY
Find Cursor Position

CRTX
CRTY

-- FUNCTION --

CRTX returns the row and CRTY returns the column of the current
cursor position.

Note: See CRT for an illustration of row and column positions.

Examples

If the cursor is currently on row 10, column 15 of the video
display:

R = CRTX

Stores 10 in R

C = CRTY

Stores 15 in C

PRINT "CURSOR IS IN ROW "; CRTX; " COLUMN "; CRTY

Prints 'CURSOR IS IN ROW 10 COLUMN 15'.

Sample Program

---------1tad1elhaell----------

PAGE 6 - 44

MODEL I/III COMPILER BASIC BASIC KEYWORDS

@) -------------

*** SAMPLE PROGRAM DEMONSTRATING CRTX, CRTY ***
r._10 F~EM

100 PRINT CHR$(28); CHR$(31)
110 PRINT 11 TYPE /~I\J <X> r\NYWHEl:~E ON THE scr~EEN .. _ II

120 PRINT "YOU MAY USE <SPACE BAR> AND <ENTER> TO POSITION CURSOR"
130 ,<\$::::: I Nl·{EY~ii
:1.Li-0 PFH NT f.1~>;
1~50 IF l:a.$ <> 11 XII THEN 13t~
160 ROW= CRTX : COL= CRTY
170 PRINT: PRINT
180 PRINT "YOUR <X> IS ON ROW"; ROW; 11 AND COLUMN"; COL

lYPE AN <X> ANYWHERE ON THE SCREEN
YOU MAY USE <SPACE BAR> AND <ENTER> TO POSITION CURSOR

X

YOUR <X> IS ON ROW 7 AND COLUMN 1
ffTOP LINE 180

-----------ft Ht

PAGE 6 - 45

®

MODEL I/III COMPI.LER BASIC BASIC KEYWORDS

------------- TRS-BO@) ___________ _

-- FUNCTION --

CVD
Convert to Real Value

CVD(number)
'number' is an integer in the range of [-32768,32767]

CVD converts the 'number' to a real number.

Examples

PRINT CVD(30000) + CVD(lOOOO)

Converts 30000 and 10000 to real numbers, performs real number
addition, and gives the correct answer. (See explanation on
numeric operations in the chapter on BASIC Concepts.)

Sample Program

80
90

100
110
120
130
1Lt0
150
160
170
180

REM
REM
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

*** SAMPLE PROGRAM DEMONSTRATING CVD ***
"SINCE 30000 IS AN INTEGER"
"BUT 60000 IS OUTSIDE THE INTEGER RANGE"
"THE PROBLEM 30000 + 30000 CAUSES THIS TO HAPPEN
"30000 + 30000 = "; 30000 + 30000

"USING CVD TO CONVERT BOTH OPERANDS TO REAL NUMBERS"
"THE PROBLEM IS SOLVED CORRECTLY "
"30000 + 30000 = "; CVD(30000) + CVD(30000)

II

---------rt IOlhaell---------

PAGE 6 - 46

MODEL I/III COMPILER BASIC BASIC KEYWORDS

·M-RU
SINCE 30000 IS AN INTEGER
BUT 60000 IS OUTSIDE THE INTEGER RANGE
THE PROBLEM 30000 + 30000 CAUSES THIS TO HAPPEN ...
NUMERIC OVERFLOW ERROR LINE 130

32767

USING CVD TO CONVERT BOTH OPERANDS TO REAL NUMBERS
THE PROBLEM IS SOLVED CORRECTLY

- 30000 + 30000 - 60000
~HOP LINE 1B0

---------- ltadaelhaell----------
PAGE 6 - 47

MODEL I/III COMPILER BASIC

-- FUNCTION -

CVI
Convert to Integer Representation

CVI(number)

BASIC KEYWORDS

'number' is a numeric expression in the range of
-3276B to 32768.

CVI returns the largest integer not greater than the 'number'.
For example, CVI(l.5) returns l; CVI(-1.5) returns -2. The
result is always a two-byte integer.

Since integers are stored in two bytes and real numbers are
stored in eight bytes, converting a number to its integer
representation changes its storage format. BASIC will execute
numeric operations, such as addition, subtraction,
multiplication, and division, much more quickly with integers
than with real numberso

Examples

PRINT CVI(lS.0075)

Prints 15.

PRINT CVI(-15.0075)

Prints -16 ..

PRINT CVI(6.l + 2.2)

Prints 8.

A= CVI(X)

Assigns the integer representation of X to A.

----------1tad10/haell----------
PAGE 6 - 48

MODEL I/III COMPILER BASIC BASIC KEYWORDS
-------------TRs-so@ ___________ _

Sample Program

80 REM *** SAMPLE PROGRAM DEMONSTRATING CVI ***
90 1:~EM

100 PRINT "ENTER A NUMBER WITH A FRACTIONAL VALUE (DDDD.DDDD)"
110 INPUT N
120 PRINT "THE INTEGER PORTION IS"; CVI(N)
130 GOTO 100

*RU
ENTER A NUMBER WITH
? :2 .. B2'.5
THE INTEGER PORTION
ENTER A NUMBER WITH
? 378.050
THE INTEGER PORTION
ENTER A NUMBER WITH
?

A

IS
A

IS
A

FRACTIONAL VALUE <DDDD.DDDD)

2
FRACTIONAL VALUE (DDDD.DDDD)

378
FRACTIONAL. VALUE <DDDD.DDDD)

----------llad10/haeli----------

PAGE 6 - 49

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-- STATEMENT --

DATA
Store Program-Data

DATA item-list
'item list' is a list of string and/or numeric

constants, separated by commas .. Stri
constants must be in quotes.

The DATA statement lets you store data inside your program to be
accessed by READ statements. The data items will be read
sequentially, starting with the first item in the first DATA
statement, and ending with the last item in the last DATA
statement.

DATA statements may appear anywhere it is convenient in the
program. Generally, they are placed together, but this is not
required. It is important that the types of data match up with
the corresponding variable types in the READ statement.

The data in DATA statements may only be constants. No variables
or expressions are allowed.

10 DATA 5,6

20 READ A,B,C

30------

40------

50 DATA 7

----------- l!tad10
®

PAGE 6 - 50

MODEL I/III COMPILER BASIC BASIC KEYWORDS

Examples

DATA "NEW YORK",uuCHICAGO","LOS ANGELES","PHILADELPHIA"

This line contains four string data items.

DATA 3072,3.14159,47.29578,378,535

This line contains five numeric data items.

DATA "SMITH, T.H. ",38, "THORN,J.R. ",41

This line contains two string and two numeric data items.

Sample Program

80 REM *** SAMPLE PROGRAM DEMONSTRATING DATA***
90 REM

100 DIM SAL..ES(6)
110 FOR X = 1 TO 6
120 READ DEPT$
130 PRINT "INPUT AMOUNT SOLD IN THE ";DEPT$; 11 DEPT. :";
140 INPUT SALES(X)
150 NEXT X
160 DAT A II PRODUCE 11

'J
II MEAT 11

,
11 BA~'{E RY 11

'J
II CANNED GOODS 11

,
11 DA I RY 11

'J
II F FWZ EN FOODS 11

·*RU
INPUT AMOUNT SOLD IN THE PRODUCE DEPT .. "'"i IS• 25
INPUT AMOUNT SOLD IN THE MEAT DEPT ? ". 58
INPUT AMOUNT SOLD IN THE BA~'{ERY DEPT .. : ? 15
INPUT AMOUNT SOLD IN THE CANNED GOODS DEPT .. "? ". 23
INPUT AMOUNT SOLD IN THE DAIRY DEPT .. : ? 38
INPUT AMOUNT SOLD IN THE FROZEN FOODS DEPT .. "? ". 32
STOP LINE 160

®

PAGE 6 - 51

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-- FUNCTION --

DATE$
Get Today's Date

DATE$

This function lets you display today's date and use it in the
program.

The operator sets the date initially when TRSDOS is started up.
When you request the date, BASIC will display it in the fashion:

04/28/79

which means April 28, 1979.

Example

PRINT DATE$

which returns:

04/28/79

Sample Program

80 REM *** SAMPLE PROGRAM DEMONSTRATING DATE$***
90 REM

100 PRINT DATEt>
110 PRINT "INVENTORY CHECK: "
120 IF DATE$<> "12/31/81" THEN 160
130 PRINT "Today is the last day of DecembeP 1981a"
140 PRINT "Time to Perform the monthly inventorYu"

---------- llad1elhaell---------

PAGE 6 - 52

MODEL I/III COMPILER BASIC BASIC KEYWORDS
-------------TRS-so@ ___________ _

150 GOTO 210
160 D$ =DATE$: AS= SEG$(D$, 4, 2)
170 B :::: Vl\L (A~f;)
180 M$ = SEGS(D$, 1, 2)
1 90 I F Mt~ = 11 j_ 2 11 THEN PR I NT :H --e. ; 11 d a Y ~- u n t i 1 i n v E• n t o r· Y t i me • 11

: GOTO 21 0
200 PRINT 11 Don,t worrv about December inventorv, how about this month's?"
210 STOP

*RU
0 l./01 /01
INVENTORY CHECI·'<:
Don't worrY about December inventorv, how about this month's?
STOP LINE 210

-----------ltadlO/haeli-----------
PAGE 6 - 53

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-- STATEMENT --

DEF
Define Function

DEF function name(dummy variable, ...)=formula
'function name' is any valid variable name.
'dummy variable' is any valid variable name which

the formula will perform operations on.
'formula' is a numeric or string expression usually

involving the 'dummy variable(s)' on the left side
of the equals sign.

The DEF statement lets you create your own function. Once you
have defined the operations your function will do, all you have
to do is call the new function by name and the operations will
be automatically performed. To call it by name, after it has
been defined with the DEF statement, simply reference the
'function name' in an expression. You can use it exactly as you
might use one of the built-in functions, like SIN, ABS and
STRING$.,

The type of variable used for function name determines the type
of value the function will return. For example, if 'function
name' is an integer variable, then that function will return an
integer even if the data used in the function are real numbers.

You may pass any data with the same type of value to the 'dummy
variable'. Furthermore, you may use the same variable name as
the 'dummy variable' in your program without the 'dummy
variable' interfering with your program variables.

Examples

DEF R(A) = INT(RND(0) * (A)+ 1)

This statement defines a function which returns a random whole
number between 1 and A. The value for A is passed in a
statement using R such as this:

Y = R(X)

PAGE 6 - 54

MODEL I/III COMPILER BASIC BASIC KEYWORDS

If X equals 10, a random whole number between 1 and 10 will be
assigned to Y.

DEF SL$ (X) = STRING$ (X, 11
-")

Defines the function names SL$ which returns a string of hyphens
X characters long. The value for Xis passed in a statement
using SL$ such as:

PRINT SL$ (30)

Which prints a string of 30 hyphens.

DEF DIV(X,Y) = SQR(X)/SQR(Y)

Defines a function named DIV which divides the square root of X
by the square root of Y. It can be used like this:

PRINT DIV(l00, 25)

Which prints 2.

Sample Programs

80 REM *** SAMPLE PROGRAM #1 DEMONSTRATING DEF***
90 REM

100 DEF DOUBLE(N) = N * 2
110 PRINT "INPUT A NUMBER"
120 INPUT X
130 PRINT DOUBLE<X>
j.'-1•0 GOTO 110

·*•liU
INPUT A NUMBER
? 25
50

IN PUT A NUMBE I~
? 78

156

PAGE 6 - 55

®

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-------------TRs-ao@ ___________ _

80 REM *** SAMPLE PROGRAM #2 DEMONSTRATING DEF***
90 REM

100 DEF SOUND(X) = 1087 + SQR(273 + X) / 16.52
110 PRINT "INPUT AIR TEMPERATURE IN DEGREES CELSIUS"
120 INPUT T
130 PRINT "THE SPEED OF SOUND IN AIR OF"; T; "DEGREES CELSIUS IS"
140 PRINT SOUND(T); "FEET PER SECOND."

*F~IJ
INPUT AIR TEMPERATURE IN DEGREES CELSIUS
? 63
THE SPEED OF SOUND IN AIR OF 63 DEGREES CELSIUS IS

1088a11 FEET PER SECONDa
BTOP LINE 1-4-0

------------ ltadlOlhaeli----------
PAGE 6 - 56

MODEL I/III COMPILER BASIC

-- STATEMENT --

DELETE
Delete Record From Disk File

DELETE #file-unit, KEY= record
'file-unit' specifies the file in terms of the

'file-unit' assigned when the file was
opened.

'KEY= record' specifies which record is to
be deleted; for ISAM records, 're~ord'
is a string expression; for direct-access
records, it is a numeric expression.

BASIC KEYWORDS

This statement deletes a record from a disk file. After a
record has been deleted, it is unreadable.

Examples

DELETE #1, KEY=2

Deletes the 2nd record in file-unit #1.

DELETE #A%, KEY=NAMES$

Deletes in file-unit A% the ISAM record with a key matching the
value of NAME$.

DELETE #START%+ INC%, KEY=RECORD%

Deletes in file-unit START%+ INC% the record numbered as
RECORD%.

Sample Program

See the chapter on data files.

-----------II
PAGE 6 - 57

MODEL I/III COMPILER BASIC

-- FUNCTION -

DIG
Compute Number of Numeric Characters

DIG(string)

BASIC KEYWORDS

'string' is a string constant or a string variable.

DIG computes the number of numeric characters in the 'string'.
It will quit searching for n_umeric characters as soon as it hits
a non-numeric character. For example, in DIG ('° 16A5") , DIG wi 11
quit counting numeric characters when it reaches the A, since A
is non-numeric, and will return the current total, 2.

DIG treats blanks, signs, decimals, and exponents as numeric
characters ..

Examples

PRINT DIG("l.2E5")

Prints 5

PRINT DIG('°33 44")

Prints 5. (The blank is considered part of the numeric field).

A= DIG("-32")

Prints 3 ..

X = DIG(B$)

Assigns the number of numeric characters in B$ to X.

PRINT DIG ("B5 11
)

Prints 0. (DIG quits searching for numeric characters after it
reads the non-numeric character, B.)

PRINT DIG ("5B32 4")

®

PAGE 6 - 58

MODEL I/III COMPILER BASIC BASIC KEYWORDS

Prints 1 ..

Sample Program

100
110
120
1:30
140
150
160
170
1B0
190
200
210

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

DEMO OF DIG FUNCTION TO EDIT A STREAM OF DATA

T~;
MAXPSN%
PSN%
CRNT$
VLULEN

CONTAINS THE INPUT STREAM
CONTAINS THE LENGTH OF THE INPUT STREAM
POINTS TO THE CURRENT START-EDIT POSITION
CONTAINS THE CURRENT STRING TO BE EDITED
IS THE LENGTH OF THE FIRST NUMERIC FIELD

VLU
A ZERO LENGTH INDICATES A NON-NUMERIC FIELD
VALUE OF THE FIRST NUMERIC FIELD

DIM TS64, CRNT$64
PRINT "ENTER A STREAM
LINE INPUT Tit;

OF NUMBERS, SEPARATED BY COMMAS"
:220
230 MAXPSN% = LEN<TS)
:21+0 PSN% ::::: 1
250 CRNTS = SEGS(TS, PSN%)
260 VLULEN% = DIG(CRNT$)
270 IF VLULEN% = 0 THEN 300
280 VLU::::: VAL(CRNTS)
290 PRINT "FOUND THIS NUMBER: "; VLU
300 PSN% = PSN% + VLULENS + 1
310 IF PSN% > MAXPSN% THEN PRINT: GOTO 210
320 GOTO 2~"50

*RU
ENTER A STREAM OF NUMBERS, SEPARATED BY COMMAS
? :3, 1+56, 2, 34,, 89
FOUND THIS NUMBER:
FOUND THIS NUMBER:
FOUND THIS NUMBER:
FOUND THIS NUMBER:
FOUND THIS NUMBER:

3
'+'.56 .-. .,::.

Jl+
89

®

PAGE 6 - 59

MODEL I/III COMPILER BASIC

-- STATEMENT -

DIM

Define String Variables and Arrays

DIM variable list
'variable list' can consist of the following

separated by commas:
string variable length

BASIC KEYWORDS

'string variable' is any valid string
variable name

'length' is an integer constant specifying
the maximum number of characters
in string variable

array string length(subscriptl, subscript2)
'string length' is the length of each

element in a string array. If omitted,
each element will be stored as 255
characters. 'string length' is omitted·
in numeric arrays.

'array' is any valid variable name
'subscriptl' and 'subscript2' are integer

constants specifying the maximum
number of subscripts in that dimension
of the array. If subscript2 is
omitted, it is a single dimensioned
array ..

Note: the lowest element in a dimension is always 0.

This statement defines the length of string variables and
arrays ..

Defining String Variables

In Compiler BASIC, each string variable is stored according to
the length specified in the STRING statement. If you do not
have a STRING statement in the program, each string variable is
stored as if it contains 255 characters ..

To override this, you may use DIM to specify the length of a

®

PAGE 6 - 60

MODEL I/III COMPILER BASIC BASIC KEYWORDS

®---------------
particular string variable name .. For example:

DIM NAME$10

allots 10 characters for NAME$..

Defining Arrays

An array is a way of storing an entire list of data under one
variable name .. Each data element is identified by one or two
subscripts. If each data element in an array contains only one
subscript, it is called a single dimensioned array; if it
contains two subscripts, it is a two-dimensioned array .. No more
than two dimensions are allowed in Compiler BASIC.

All arrays must be defined with a DIM statement before they can
be used in the programe For example:

DIM A(2)

Allots room in memory for an array named A which can contain up
to 3 numeric data elements (0,1,and 2)e For example, each of
these subscripted variables could be assigned:

A(0) = 3.5
A(l) = 40000
A(2) = 5.15

A double dimensioned array is defined in this manner:

X(l,1)

This allots room for a double dimensioned array named X which
can contain up to 2 numeric data elements in the first dimension
and 2 numeric data elements in the second dimension. This array
might be programmed to contain:

X(0,0) = 25.1
X(l,0) = 22 .. 2

X(0,l) = 13 .. 7
X(l,l) = 32 .. 6

Arrays may be integer or string with the proper type declaration
tag. A string array will allot 255 characters for each data
element unless the string length is defined. For example:

A$(10)

Allots room for an array named A$ with up to 11 string data
elements .. Memory is set aside for each of the 11 data elements

®

PAGE 6 - 61

MODEL I/III COMPILER BASIC BASIC KEYWORDS

----------- TRS-so@ __________ _

to contain 255 characters for a total of 255xll=2805 characters.

A$5 (10)

This also allots room for an array named A$ with up to 11 string
data elements. However, in this array, each element may contain
only 5 characters for a total of 5xll=55 characters.

Examples

DIM A{l00), B$5, C%{9,9)

The numeric array A is defined with 101 elements, and C% is
defined containing 100 {10 * 10) elements. The string B$ can
contain no more than 5 characters.

DIM DATA$3, DAVIS$6, DVI$1

The strings DATA$, DAVIS$, and DVI$ are defined containing 3, 6,
and 1 characters respectively.

DIM M$1{200), C$2{100)

The array M$ is defined to contain 201 one-character string data
elements. Array C$ may contain 101 two-character string data
elements.

Sample Programs

80 REM *** SAMPLE PROGRAM #1 DEMONSTRATING DIM***
90 REM

100 DIM A%(10,10)
110 PRINT "SALES DATA WILL BE STORED IN ARRAY A% AS FOLLOWS"
120 PRINT CHR$(28); CHRS(31) : PRINT" ", "MONTH 1", "MONTH 2", "MONTH 3"
130 FOR X = 1 TO 4
140 PRINT: PRINT "ITEM"; X,
150 FOR Y = 1 TO 3
160 READ A%(X,Y)
170 PRINT A%(X,Y),
180 NEXT Y

--------ltadle

PAGE 6 - 62

®

MODEL I/III COMPILER BASIC BASIC KEYWORDS
-------------TRs-so@ ___________ _

190 NEXT X
200 PRINT: PRINT "INPUT ITEM# AND MONTH#"
210 INPUT X,Y
220 PRINT "SALES DATA FOR ITEM"; X; "AND MONTH"; Y; "IS: "; A%CX,Y>
230 GOTO 200
240 DATA 34,63,55,66,33,22,11,99,88,77,66,55

MONTH 1 MONTH 2 MONTH 3

ITEM 1 3L• 63 55

ITEM 2 66 33 22

ITEM 3 11 99 88

ITEM '+ Tl 66 55

INPUT ITEM # AND MONTH #
? 3
? 3
SALES DATA FOR ITEM 3 AND MONTH 3 IS 88

---------- llad1elhaeli----------
PAGE 6 - 63

MODEL I/III COMPILER BASIC BASIC KEYWORDS

10 REM *** SAMPLE PROGRAM #2 DEMONSTRATING DIM***
2(7j REM
30 PRINT CHR$(28); CHR$(31)
'-1-0 DIM L$(1tlh3)
::, ,1 M ==~ 0
60 PRINT "MEMBERSHIP ARRAY IS DIMENSIONED FOR UP TO 10 MEMBERS"
70 M:::: M + 1
80 PRINT "INPUT NAME, ADDRESS, AND PHONE# OF MEMBER"; M
90 FOR X = 1 TO 3

100 INPUT l$(M,X)
:I. :1.0 NEXT X
120 IF M = 10 THEN 160
130 PRINT "IS THERE ANOTHER MEMBER (Y/N)"
1 Li-0 INPUT A~;
1~50 IF /.\$ ~-= 11 Y 11 THEN 70
160 PRINT: PRINT 11 THE LIST IS STORED AS FOL.LOWS: 11

170 PRINT "NAME", 11 ADDliESS 11
'j

11 PHONE: 11

1 80 PR I NT STRING$ (64·, 11
-

11
) ;

190 FOR I= 1 TOM
200 FOR J = 1 TO 3
210 PRINT L$(l,J),
L::;:0 NE x1· '-T
230 PRINT
2Lt0 NEXT I

MEMBERSHIP ARRAY IS DIMENSIONED FOR UP TO 10 MEMBERS
INPUT NAME, ADDRESS, AND PHONE# OF MEMBER 1
? SANDY WILLIAMS
? 3200 ASH P,'.\m'(
? 28.tkffLtL1A7
IS THERE ANOTHER MEMBER (Y/N)
? y
INPUT NAME, ADDRESS, AND PHONE# OF MEMBER 2
? LINDA GORDON
? 3507 HARRISON
? 267-0459
IS THERE ANOTHER MEMBER (Y/N)
? N

THE LIST IS STORED AS FOLLOWS
NAME ADDRESS

SANDY WILLIAMS 3200 ASH PARK
LINDA GORDON 3507 HARRISON
STOP LINE 240

PHONE

284·-4L~47
267-0459

----------- lladlOlllaeli----------
PAGE 6 - 64

MODEL I/III COMPILER BASIC BASIC KEYWORDS @ ______________ _

-- STATEMENT -

END
Terminate Program Compilation

END

END terminates compilation of your main program. This means,
when you are RUNning or COMPILEing a program, the Compiler will
quit compiling and assume the program has ended as soon as it
encounters an END statement. Since this is different from the
way END works in the BASIC Interpreter, it is important that you
remember not to use END in the middle of a program if you want
to use the lines following the END statement. Use STOP for that
purpose.

Some versions of BASIC require END as the last statement in a
program. In Compiler BASIC this is optional .. However, when
using a subprogram, you must put an END statement as the last
statement in your main program. Otherwise, BASIC will not be
able to separate your main program from the subprogram.

Note: Also see SUB, SUBEND, CALL, and the chapter on Segmenting
Programs.

Example

END

This statement "turns off 88 the compiling of your program. BASIC
then assumes there are no more main program lines following this
statement ..

Sample Program

®

PAGE 6 - 65

MODEL I/III COMPILER BASIC BASIC KEYWORDS

10 PRINT "EXECUTING THE MAIN PROGRAM"
20 CALL "SUBPROG"; "THIS IS FROM THE MAIN PROGRAM"
30 PRINT "BACK TO THE MAIN PROGRAM"
40 END

100 SUB "SUBPROG"; A$
110 PRINT "NOW IN THE SUBPROGRAM"
120 PRINT A$
130 SUBEND

•

PAGE 6 - 66

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-- FUNCTION --

EOF
Notify if End of File

EOF(#file-unit)
'file-unit' is a numeric expression specifying

a file opened for sequential access.

This function tells whether the end-of-file {EOF) has been
reached during sequential input. If the EOF has been reached,
it returns a value of -1 (TRUE). Otherwise, it returns a value
of O (FALSE) .

Examples

IF EOF(#l) = -1 THEN CLOSE #1
If the end of file has been reached in file-unit 1, the fife is
closed ..

STATUS%= EOF(#A%)
File-unit A%'s EOF status (-1/TRUE or 0/FALSE) is stored in
STATUS%.

Sample Program

See Chapter 4 ..

e~------------
PAGE 6 - 67

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-- FUNCTION --

ERR
Get Error Code

ERR

ERR returns the code of the error that happened in the program.
It is normally used inside an error-handling routine accessed by
ON ERROR GOTO. The section on error codes in the Appendix gives
the error code for each error.

Examples

IF ERR= 7 THEN 1000 ELSE 2000

If the error is an Out of Data error (code 7) the program
branches to line 1000; if it is any other error, control will
instead go to line 2000.

Sample Program

80 REM *** SAMPLE PROGRAM DEMONSTRATING ERR***
90 REM

100 ON ERROR GOTO 150
110 DATA 1, 2
120 READ A, B, C
130 PRINT "A="; A; "B = "; B; " C = "; C
140 STOP
150 IF ERR<> 7 THEN ERROR ERR
160 PRINT "YOU DON'T HAVE ENOUGH DATA FOR ALL THE VARIABLES"
170 GOTO 130

·M-RU
YOU DON'T HAVE ENOUGH DATA FOR ALL THE VARIABLES
A= 1 B = 2 C = 1.02129 E+53
STOP LINE l.40

®

PAGE 6 - 68

MODEL I/III COMPILER BASIC BASIC KEYWORDS
@ ______________ _

-- STATEMENT --

ERROR
Simulate Error

ERROR code
'code' is a numeric expression defining the

error code

An ERROR statement in your program causes BASIC to act exactly
as if the specified error had occurred. You can specify an
error with its error code. The Appendix has a listing of error
codes and their meanings.

ERROR is primarily used in ON ERROR GOTO routines: either for
simulating the error that occurred or for testing the routine.

Examples

ERROR 7

When your program reaches this line, an Out of Data error (code
7) will "occur", and the Computer will print a message to this
effect.

IF ERR<> 5 THEN ERROR ERR

This line could be in the error handling routine initiated by ON
ERROR GOTO .. It tells the Computer that if the error which
caused it to come to this routine was not an Input Syntax error
(code 5), then print the appropriate error message.

Sample Program

100 INPUT N
110 ERROR N

*RU
? N
INPUT SYNTAX ERROR LINE 100

PAGE 6 - 69

®

MODEL I/III COMPILER BASIC

-- FUNCTION -

EXP
Compute Natural Exponential

EXP(number)
'number' is a numeric expression.

BASIC KEYWORDS

EXP returns the natural exponential of the 'number', that is, e
to the power of 'number'. This is the inverse of the LOG
function; therefore, X = EXP(LOG(X)). The result is always a
real number.

Examples

H = EXP(A)

Assigns the value of EXP(A) to H.

PRINT EXP(-2)

Prints the value .135335.

E = (Gl + G2 - .07) * EXP(.055 * (Gl + G2))

Performs the required calculation and stores it in E.

Sample Program

*RU

10 PRINT "INPUT A NUMBER"
20 INPUT N
30 PRINT "E RAISED TO THEN POWER IS"; EXP(N)
40 GOTO 10

INPUT A NUMBER
? 56
E RAISED TO THEN POWER IS 2.09166 E+24

-----------11 le

PAGE 6 - 70

MODEL I/III COMPILER BASIC

-- FUNCTION

EXPl0
Compute Base 10 Exponential

EXPl0(number)
'number' is a numeric expression

BASIC KEYWORDS

EXPl0 raises 10 to the power of 'number'. As the inverse of
LOGl0, X=EXPl0(LOGl0(X)). The result is always a real number.

Examples

X = EXPl0(Y)

Raises 10 to the Y power and assigns that value to X.

PRINT EXP10(3)

Prints 1000.

X =(A+ B) + EXPl0(A)

Performs the calculation and records the result in X.

Sample Program

10 INTEGER R
20 PRINT "TABLE OF RANDOM NUMBERS "
30 PRINT "ENTER MAXIMUM NUMBER OF DIGITS YOU WANT CUP TO 4)"
4l~ INPUT L
5(2) X :::: EXP10(L) : R :::: X - 1
60 FOR I= 1 TO 100
70 PRINT INT(RND(0) * R),
80 NEXT I
90 PRINT: GOTO 10

PAGE 6 - 71

®

MODEL I/III COMPILER BASIC

-- STATEMENT -

EXT
Define Address of External Program

EXT subname=address

BASIC KEYWORDS

'subname' is a 1-6 character name for the external
subroutine

'address' is the memory address, in hexadecimal
or integer notation, where the external subroutine
originates.

You may interface an external object code program with your
BASIC program by using EXT. EXT names the external subroutine
and defines the memory address where the subroutine originates.
To call the routine, use CALL.

Note: See the chapter on Segmenting Programs.

Examples

EXT SUBPROG=&E000

the external routine named SUBPROG originates at the memory
address of hex E000.

Sample Program

See the chapter on Segmenting Programse

®

PAGE 6 - 72

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-- STATEMENT --

FOR/NEXT
Establish Program Loop

FOR variable= initial value TO final value STEP
increment

'variable 1 is any numeric variable name;
'variable' is optional after NEXT

0 initial value', 'final value', and 'increment'
are numeric constants, variables, or
expressions.,

STEP 'increment' is optional; if STEP 'increment'
is omitted, a value of 1 is assumed.

FOR ... TO ... STEP/NEXT opens a repetitive loop so that a sequence
of program statements may be executed over and over a specified
number of times.

en
Cl)

E
+-'
LO

__ ,_,....,.10 FOR X=1 TO 5

en
Cl)

E
+-'
M

15 FOR Y=1 TO 3

20 NEXT Y

__,_ 30 NEXTX

When BASIC executes the FOR statement for the first time, it
sets the 'variable' to 'initial value'. Then 'variable' is
compared with 'final value 0

o If 'variable' is greater than

®

PAGE 6 - 73

MODEL I/III COMPILER BASIC BASIC KEYWORDS

'final value', BASIC completes the loop and goes to the
statement following NEXT. (If 'increment' is a negative number,
the loop ends when 'variable' is LESS than 'final value'.)

If 'variable' has not yet exceeded 'final value' BASIC
continues executing the next statements until it encounters
NEXT. At this point, BASIC goes back to FOR and increments the
•variable 0 by the amount specified in step 'increment'. (If
'increment' has a negative value, the 'variable' is actually
decremented.) STEP 'increment' is often omitted, in which case
BASIC uses 1 as an increment. BASIC then repeats the whole
process, comparing 'variable' with 'final value'.

Examples

FOR X = 1 TO 3

Sets up a loop which will be repeated 3 times: when Xis 1, 2,
and 3. (Since no STEP increment is specified, an increment of 1
is used ..)

This loop is closed by the following statement:

NEXT X

FOR I= 2 TO 6 STEP 2

Sets up a loop to be repeated 3 times: when I is 2, 4, and 6.

FOR I= 8 TO 5 STEP -1

Sets up a loop to be repeated 4 times: when I is 8, 7, 6, and
5 0

Both of the loops above are closed by the statement:

NEXT I

Sample Programs

®

PAGE 6 - 74

MODEL I/III COMPILER BASIC BASIC KEY°WORDS

80 REM *** SAMPLE PROGRAM #1 DEMONSTRATING FOR/NEXT***
90 REM

100 FOR I= 10 TO 1 STEP -1
110 PRINT I;
120 NEXT I

*RU
10 9 8 7 6 5 4 3 2 1 STOP LINE 120

80
90

100
110
120
130
140
150

REM *** SAMPLE PROGRAM DEMONSTRATING FOR/NEXT***
REM
FOR I= 1 TO 3
PRINT "OUTER LOOP"

FOR J = 1 TO 2
PRINT" INNER LOOP"

NEXT J
NEXT I

*liU
OUTER LOOP

INNER LOOP
INNER LOOP

OUTE•~ LOOP
INNER LOOP
INNEli LOOP

OUTER LOOP
INNER LOOP
INNER LOOP

STOP LINE 150

PAGE 6 - 75

®

MODEL I/III COMPILER BASIC

-- STATEMENT -

GOSUB
Go to Specified Subroutine

GO SUB line number
GOSUB line number

BASIC KEYWORDS

GO SUB or GOSUB (the space is optional) transfers program
control to the subroutine beginning at the specified line
number. Like GOTO, GOSUB is an unconditional or automatic
program branch which may be conditional if it follows a test
statement.

RETURN ends the subroutine by sending program control back to
the line immediately following the GOSUB statement. All
subroutines are ended by a RETURN statement.

Note: Also see RETURN.

10------

20------

80------

--.... 100 RETURN

®

PAGE 6 - 76

MODEL I/III COMPILER BASIC BASIC KEYWORDS

Examples

GOSUB 1000

When this line is executed, control will automatically branch to
the subroutine at 1000.

IF A$= 18 YES" THEN GOSUB 2000

Here, GOSUB is a conditional branch. If the condition is true,
then control will branch to the subroutine at line 2000.
However, if the condition is false, the program will immediately
advance to the next line. GOSUB 2000 will be ignored.

Sample Program

80 REM *** SAMPLE PROGRAM DEMONSTRATING GOSUB ***
90 REM

100 GOSUB 120
110 PRINT "BACK FROM THE SUBROUTINE" STOP
120 PRINT "EXECUTING THE SUBROUTINE"
130 RETURN

*RU
EXECUTING THE SUBROUTINE
BACK FROM THE SUBROUTINE
STOP LINE 110

-----------11
PAGE 6 - 77

®

MODEL I/III COMPILER BASIC

-- STATEMENT -

GOTO
Go To Specified Line Number

GO TO line number
GOTO line number

BASIC KEYWORDS

GO TO or GOTO (the space is optional) transfers program control
to the specified line number. Used alone, GOTO results in an
unconditional or automatic branch. However, a test may precede
the GOTO to effect a conditional branch.

Examples

GOTO 100

When this line is executed, control will automatically be
transferred to line 100.

IF A= 1 THEN PRINT "CORRECT": GOTO 50

In this statement, GOTO is used as a conditional branch. If A=
1, the Computer will print "CORRECT"' and transfer control to
line 50. However if A does not equal 1, control will drop to
the next program line. GOTO 50 will be ignored.

Sample Program

10 REM *** SAMPLE PROGRAM DEMONSTRATING GOTO***
20 GOTO 40
25 PRINT "LINE 25"
27 STOP
30 PRINT "LINE 30"
35 GOTO 25
40 PRINT "LINE 40"
50 GOTO 30

---------1tad1elhaeli---------
PAGE 6 - 78

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-- FUNCTION --

HEX$
Compute Hexadecimal Value

HEX$(number)
'number' is a numeric expression in the range

-32768 to 32767.

HEX$ is the inverse of the HVL function. It returns a string
which represents the hexadecimal value of the 'number'. Since
the hexadecimal value is returned as a string, it cannot be used
in a numeric expression. You cannot add, subtract, multiply or
divide hex strings. You can concatenate them, though.

The hexadecimal string returned represents the value of the
stored 'number'. Since the 'number' is an integer, it is stored
in two's complement notation. HEX$(-l) returns the hexadecimal
string "FFFF", since this is the way -1 is stored in two's
complement notation. An explanation on the storage of integers
is in the Programmers Information Section.

Examples

PRINT HEX$(30), HEX$(50), HEX$(90)

Prints the following strings:

00lE 0032 005A

PRINT HEX$(-l), HEX$(-16), HEX$(-32768)

Prints the following strings:

FFFF FFF0 8000

Y$ = HEX$(X/16)

Y$ is the hexadecimal string representing the integer quotient

-----------11 ®

PAGE 6 - 79

MODEL I/III COMPILER BASIC BASIC KEYWORDS

X/16.

Sample Program

80 REM *** SAMPLE PROGRAM DEMONSTRATING HEX$***
90 HEM

100 PRINT "INPUT A DECIMAL NUMBER FROM 1 TO 32767"
110 INPUT DEC
120 PRINT "HEXADECIMAL VALUE IS"; HEXS<DEC)
1:30 GOTO 1(ZH2}

·*RU
INPUT A DECIMAL NUMBER FROM 1 TO 32767
? '+56 .. 89
HEXADECIMAL VALUE IS 01C8

e~------------
PAGE 6 - 80

MODEL I/III COMPILER BASIC

-- FUNCTION -

HVL
Convert Hexadecimal String

HVL{string)

BASIC KEYWORDS

'string' is a string constant or a string variable.

HVL is the inverse of the HEX$ function. It returns the integer
value of a hexadecimal string. Since integers are stored in
two's complement notation, hexadecimal values over 7FFF will
return negative integers.

Note: An explanation on the Storage of Integers is included in
the Programmers Information Section

Examples

PRINT HVL ("7FFF")

Prints 32767.

PRINT HVL (.. 80 00")

Prints -32768.

PRINT HVL("4C IS THE CODE FOR L")

Prints 76. (HVL read the hexadecimal number "4C" and then
stopped its search since the next character was not a
hexadecimal character.)

H = HVL (IV F II)

Assigns the value 15 to H.

Sample Program

-----------ltadlO/haell----------
PAGE 6 - 81

MODEL I/III COMPILER BASIC BASIC KEYWORDS

80 REM *** SAMPLE PROGRAM DEMONSTRATING HVL ***
90 REM

100 PRINT "TYPE A HEXADECIMAL NUMBER"
110 INPUT A~t;
120 N:::: HVL(A$)
130 IF N < 0 THEN D = N + 65536 ELSE D = N
140 PRINT "THE INTEGER REPRESENTATION FOR"; A$; " IS"; N
150 PRINT
160 PRINT A$; " CONVERTED TO A DECIMAL NUMBER IS"; D
170 PRINT
180 GOTO 100

*RU
TYPE A HEXADECIMAL NUMBER
? 7FFF
THE INTEGER REPRESENTATION FOR 7FFF IS 32767

7FFF CONVERTED TO A DECIMAL NUMBER IS 32767

----------- lladNt /llaell----------
PAGE 6 - 82

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-- STATEMENT --

IF. G .. THEN ELSE
Test Conditional Expression

IF test THEN statement or line number ELSE statement or
line number

'test• is one or more relations connected by logical
operators
'relation• is two numeric or two string

expressions separated by a relational
operator

'statement' is one or more BASIC statements
separated by colons. A line number may
be substituted for 'statement'.

ELSE statement is optional

Note that 'statement' must be executable, e.g.,
not a REM or DIM statement.

IF ... THEN ... ELSE tests the 'relation' to see if it is true. If
it is true and there is more than one relation separated by
logical operators, BASIC will continue testing each relational
and logical operation in the statement.

If the 'test' returns a true result, the statement or
statements following THEN will be executed. If the test returns
a false result, control will jump to the statement or statements
following ELSE, or, if ELSE is omitted, to the next program
line ..

The conditional statement GOTO 50 may be replaced by simply a
line number ..

Examples

IF X > 127 THEN PRINT "OUT OF RANGE" : STOP

If Xis greater than 127, the statement will be printed and
program execution will stop. If Xis not greater than 127,
control will jump down to the next program line, skipping the

PAGE 6 - 83

MODEL I/III COMPILER BASIC BASIC KEYWORDS

PRINT and STOP statements.

IF X > 0 ANDY<> 0 THEN Y = X + 180

If both expressions are true, then Y will be assigned the value
X + 180. Otherwise, control will pass directly t0 the next
program line, skipping the THEN clause.

IF A< B THEN PRINT 18 A < B" ELSE PRINT 11 B <= A"

If A is less than B the Computer prints the fact and then
proceeds down to the next program line, skipping the ELSE
statement. If A is not less than B, the Computer jumps directly
to the ELSE statement and prints the 18 B <= A 11

• Then control
passes to the next statement in the program.

IF A$ = "YES" THEN 210 ELSE IF A$ = "NO uu THEN 40 0 ELSE 3 7 0.

If A$ is YES then the program branches to line 210. If not, the
program skips over to the first ELSE, which introduces a new
test. If A$ is NO then the program branches to line 400. If A$
is any value besides NO or YES, the program skips to the second
ELSE and the program branches to line 370.

IF A> 0001 THEN B = 1/A: A= A/5 ELSE 1510

If the value of A is greater than .001, then the next two
statements will be executed, assigning new values to Band A.
Then the program will drop down to the next line, skipping the
ELSE statement. But if A is less than or equal to .001, then
the program jumps directly over to ELSE, which then instructs it
to branch to 1510. Note that GOTO is not required after ELSE.

Sample Programs

80 REM *** SAMPLE PROGRAM #1 DEMONSTRATING IF/THEN***
90 REM

100 PRINT "INPUT THE NUMBER 0 OR 1"
110 INPUT N
120 IF N = 0 ORN= 1 THEN STOP ELSE PRINT "NOT A BINARY DIGIT"

*RU
INPUT THE NUMBER 0 OR 1
? 1
STOP LINE 120

-----------II
PAGE 6 - 84

®

MODEL I/III COMPILER BASIC BASIC KEYWORDS

80 REM *** SAMPLE PROGRAM #2 DEMONSTRATING IF/THEN***
90 REM

100 PR I NT II DO YOU t,.JANT TO TEST THE IF /THEN BT ATEMENT 11

110 INPUT A$
120 IF A$= "YES 11 THEN PRINT 11 YOU INPUT YES" : GOTO 100: ELSE IF A$ -

11 N0 11 THEN STOP ELSE PRINT II INPUT YES OR N0 11
: GOTO 110

*HU
DO YOU WANT TO TEST THE IF/THEN STATEMENT
? YES
YOU INPUT YES
DO YOU WANT TO TEST THE IF/THEN STATEMENT
? NO
STOP LINE 120

10
2(2)

REM
INPUT

*** IF ... THEN ... ELSE STATEMENT***
PFi{OMPT~= II YES OR NO (y /N)? II ; R$

30 IF R$ = 11 Y11 THEN L~(Z)

32 IF R$:.-:::
11 N 11 THEN 50 ELSE 20

40 PRINT "THAT'S BEING POSITIVE! 11

45 STOP
~. (2) PRINT 11 WHY so NEGATIVE?"
~)5 STOP

RUN
YES OR NO (Y/N)? Y
THAT'S BEING POSITIVE!
STOP LI NE -4-5
*RUN
YES OR NO (Y/N)? N
WHY SO NEGATIVE?
STOP LINE 55

----------11 IO

PAGE 6 - 85

MODEL I/III COMPILER BASIC BASIC KEYWORDS (® _____________ _

-- FUNCTION -

INKEY$
Get Keyboard Character if Available

INKEY$

Returns a one-character string from the keyboard without the
necessity of having to press ENTERo If no key is pressed, a
null string (length zero) is returnedo Characters typed to
INKEY$ are not echoed to the Displayo

Example

A$= INKEY$

When put into a loop, the above program fragment will get a key
from the keyboard and store it in A$o If the line above is used
by itself, when control reaches it and no key is being pressed,
a null string (n") will be stored in A$..

Sample Programs

10 REM *** INKEY$ FUNCTION***
:20 DIM C$1
30 PRINT CHR$C28); CHR$(31)
40 PRINT "ECHO PROGRAM - TYPE ANY TEXT KEY AND IT WILL BE ECHOED"
50 A$:::: Il\ff\EY$
60 IF A$:::: "" THEN ~)0
65 IF A$ < 11 11 THEN 90
70 PRINT A$;
80 GOTO 50
90 IF A$= CHR$(01) THEN STOP

100 PRINT 11 CONTROL CHARACTERS ARE IGNORED - PRESS <BREAK> TO QUIT 11

110 GOTO 50

ECHO PROGRAM - TYPE ANY TEXT KEY AND IT WILL BE ECHOED
DCONTROL CHARACTERS ARE IGNORED - PRESS <BREAK> TO QUIT

®

PAGE 6 - 86

MODEL I/III COMPILER BASIC BASIC KEYWORDS

@) -----------------------

-- STATEMENT --

INPUT
Input Data

INPUT LENGTH=number, PROMPT=string; variable-list
'string' is a string constant or a string variable ..

PROMPT=string; may be omitted ..
'variable-list' is a list of variables, with a comma

after. each but the last .. The variable-types
(string, integer, real) should match the data
to be input ..

'number' is an integer value 1-255 specifying the
maximum number of characters to input. If omitted,
default is 255 ..
LENGTH=number is optional.

This statement inputs data from the keyboard.

When executed, INPUT displays the prompt string or a question
mark. When you press <ENTER>, INPUT edits the input stream
until it satisfies the input 'variable~list'. If the expected
number of data items are found, INPUT is complete. If more are
needed, INPUT displays another question mark and waits for
further input ..

Special Keys During INPUT
<ENTER> Ends the line at the current cursor position.
shift<- Erases the line and starts over.
<SPACEBAR> Advances the cursor and types a blank space.
<- Backspaces the cursor and erases character ..
<BREAK> Halts the INPUT and gives control to the <BREAK>

handler ..

All other keys are accepted as data for the input line.

Examples

®

PAGE 6 - 87

MODEL I/III COMPILER BASIC

INPUT A, B, C, D

Inputs values for the four variables listed.

INPUT A$

Inputs a string value for A$

Sample Program

10 REM *** INPUT STATEMENT***

DATA LIKE THIS: name, age"
AGE%

BASIC KEYWORDS

20 DIM NAME$25
30 PRINT "ENTER
40 INPUT NAME$,
50 PRINT: PRINT
60 PRINT "NAME:
70 PRINT "AGE:
80 PRINT

"HERE'S HOW '11fiE DATA WAS EVALUATED:"
' IV ; NAME$; " ' "
' " ; AGE% ; II ' II

90 GOTO 30

Input Stream Edit Process

Leading spaces are always ignored. Beyond that, the editing
process used depends on whether the target variable is string or
numeric ..

String Input

The string field starts with the first non-space character, and
ends when a comma or carriage return is encountered. If a comma
is encountered before any non-space characters, the target
variable is given the null-string value, and input continues
with the next target variable (if any). If a carriage return is
encountered before any non-space characters, INPUT displays a
new input buffer and waits for more data for the same target
variable.

There is a special case when the first non-space character is a
double-quote '"'. This causes all subsequent characters,
including commas, to be accepted into the string, up to the next
un-paired quote or carriage return (<ENTER>).

To include a double-quote in a quoted string, use paired
double-quotes.

For example, the table below describes the result of the

®

PAGE 6 - 88

MODEL I/III COMPILER BASIC

statement

INPUT X$

BASIC KEYWORDS

under various conditions (<ENTER> represents a carriage return;
n~n represents a leading or trailing blank space and is used
only where necessary for illustration or emphasis.)

Data stream

J.D. POWERS <ENTER>
~~~J.D. POWERs~~~, 
FIRST, SECOND, THIRD <ENTER> 
, FIRST <ENTER> 
HE SAID "HI" <ENTER> 
HE SAID "HI, JACK" <ENTER> 

VD J.D. POWERS "<ENTER> 
"HE SAID "'°HI""" <ENTER> 
"HE SAID, ""HI, JACK. " 00

" 

Numeric Input 

Result in X$ 

'J .. D .. POWERS' 
'J.D .. POWERS 
'FIRST' 
" (null string) 
'HE SAID 81 HI"' 
'HE SAID e'HI 1 

J .. D .. POWERS 
'HE SAID "HI 11

' 

ff HE SAID, "HI, JACK .. vu ff 

The numeric field starts with the first non-space character, and 
ends when a comma or carriage return is encountered. If the 
comma is encountered first, the target variable is given a value 
of zero, and input continues with the next target variable, if 
any. If a carriage return is first, INPUT displays a new 
question mark and waits for more data for the same target 
variable. 

Once a numeric field has been delimited, INPUT evaluates the 
field. The following characters are valid in a numeric field: 

Digits 0-9 
Decimal point 
E (Exponent suffix) 
+ and - signs 
Blank spaces (They are ignored.) 

All other characters are invalid. 

If an invalid character is encountered, input stops. The target 
variable receives the value of the field up to that point, and 
an error (INPUT SYNTAX ERROR #5) is generated. 

Even valid characters may terminate a field, if they are used 
out of context. The following diagram shows the general form 

® 

PAGE 6 - 89 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 
@ _____________ _ 

for a numeric field in which all the elements are valid (note 
that spaces may separate any two elements without having any 
effect on the evaluation): 

DIGIT EXPONENT 

DIGIT 

'digit' is one of the characters from O through 9. 
'exponent' is a whole number from -64 to +63. The sign is 
optional for positive values. 

For example, the table below describes result of the statement 

INPUT X$ under various conditions. (<ENTER> represents a 
carriage return; n~n represents a leading or trailing blank 
space and is used only where necessary for illustration or 
emphasis .. ) 

Data stream 

~~~100~~~ <ENTER> 
1 2 3 4 5,
, 1 2 3 4 5 <ENTER>
-1 .. 2345 ES <ENTER>
+123450 .. E-5 <ENTER>
100H <ENTER>
1234/ <ENTER>
1 ... 2 <ENTER>
.... 1 <ENTER>

Result in X$

100
12345
0
-123450
1.2345
100 {Error #5)
1234 (Error #5)
1
0

®

PAGE 6 - 90

MODEL I/III COMPILER BASIC BASIC KEYWORDS

10 REM *** INPUT STATEMENT***
20 DIM MSG$64
]0 INPUT PROMPT :::: 11 TYPE IN A MESSAGE: 11

; MSG$
1.,.0 INPUT Pl~OMPT::::: 11 TYPE IN THREE NUMBERS: "; Nl, N2, N,3
50 PRINT "DATA IS STORED LIKE THIS"
60 Pf~ I NT 11

.,
11

; MSG~®; ; " ., 11

70 PRINT Nl, N2, N3
80 PRINT: GOTO 30

Ii -------------
PAGE 6 - 91

MODEL I/III COMPILER BASIC

INPUT from a disk file
Input Data From Disk File

Sequential access:

-- STATEMENT --

INPUT# file-unit; variable-list

Indexed sequential access:
INPUT# file-unit, KEY= key; variable-list

Direct access:

BASIC KEYWORDS

INPUT # file-unit, KEY = record--number; variable-list

'file-unit' is a numeric expression specifying the
output file. The file-unit number is assigned when
the file is opened.

'variable-list' specifies the target variables to
receive the data input from the file. Every
variable but the last must be followed by a
comma. There should be no punctuation
after the last variable.

'KEY=key' is used for input from indexed sequential
access files. 'key' is a string expression
containing the sort key.

'KEY=record-number' is used for input from direct
access files. 'record-number' is a numeric
expression specifying the record number.

This statement inputs data from a disk file. The data should
have been written by an analogous PRINT to disk file statement.
The number and type of target variables should match the number
and type of values in the PRINT item-list.

The input stream edit process is like that of INPUT from the
keyboard.

Examples

INPUT #1; A, B, C, D

®

PAGE 6 - 92

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-------------TRS-BO ®----------IJIIIIIIIEII-
Inputs values for A, B, C and D from file-unit #le

INPUT #2, KEY=NAME$; PAYRAT, EXEMPT%

Inputs values for PAYRAT and EXEMPT% from the record indexed by
the contents of NAME$, from file-unit #2o

INPUT #3, KEY=RECORD%; PAYRAT, EXEMPT%

Inputs values for PAYRAT and EXEMPT% from the direct-access
record specified by RECORD%, from file-unit #3.

Sample Program

See the chapter on data files.

----------1tad1elllaeli----------

PAGE 6 - 93

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-- STATEMENT --

INPUT USING
Input Formatted Data

INPUT USING LENGTH=number, PROMPT=string; variable-list
'string' is a string constant or string variable.

PROMPT=string; may be omitted.
'image' specifies the format of the data; it

can be a line number referring to an image
statement, or a string constant or string
variable containing the image specifiers.

'variable-list' is a list of one or more variables,
with a comma after each but the last. The
variable-types (string, integer, real)
should match the data to be input.

'number' is an integer specifying the maximum number
of characters to input.
LENGTH=number is optional. The default value is
255 ..

INPUT USING inputs data from the keyboard according to a
specified format--how many fields, how many characters in each
field, and which characters to skip over.

You specify the format with an image line--either contained on a
separate program-line, or in a string variable referenced in the
INPUT USING statement. Image lines contain special characters
indicating the positions and lengths of fields within the data.

When executed, INPUT USING displays the prompt or a question
mark. When you press <ENTER>, INPUT USING edits the data until
it finds enough fields to satisfy the input 'variable-list'. If
the expected number of data fields are not found, INPUT USING
displays a new question mark and waits for more data.

Special Keys During INPUT USING

<ENTER>

shift<
<SPACEBAR>
<-
<BREAK>

Terminates the line at the current cursor
position and begins input-stream editing.
Erases the line and starts over.
Advances the cursor and types a blank space.
Backspaces the cursor and erases character.
Halts the INPUT USING and gives control to the
<BREAK> handler.

---------rtadaolhaell---------
PAGE 6 - 94

MODEL I/III COMPILER BASIC BASIC KEYWORDS

All other keys are accepted as data for the input line.

Image Lines for INPUT USING

If stored in a separate program line, image lines take this
form:

nnnnnb; image
'nnnnnb' is the line number, followed by a blank space
';' marks the line as a non-executable image line
'image' is a sequence of characters defining the image

format, as follows:
'#' specifies a numeric or string character.

A sequence of N "#" characters represents a
numeric or string field of N characters.

You can also store the image inside a string variable. Simply
assign the appropriate image character sequence to the string
variable.

Examples

100 IMAGE$="###########################"
110 INPUT USING IMAGE$, FIELD1$, FIELD$, FIELD3, FIELD4%

Inputs values for the four variables listed, using the image
contained in IMAGE$.

100 ; #######
110 INPUT USING 100, RATE

Inputs a value for RATE, according to the image statement in
line 100.

Sample Programs

100 REM *** INPUT USING***
110 DIM NAME$25, IMAGE$28
120 REM :---25 character name---: nn
130 IMAGE$="###########################"
140 PRINT "TYPE IN A LINE LIKE THIS (name, age)"
150 PRINT TAB(2); IMAGE$
160 INPUT USING IMAGE$, NAME$, AGE%

---------- lladlO lllaeli----------
PAGE 6 - 95

MODEL I/III COMPILER BASIC BASIC KEYWORDS @ _____________ _

170 PRINT: PRINT "DATA WAS EVALUATED LIKE THIS: 00

180 PRINT "NAME: '"; NAME$; "'"
190 PRINT "AGE: '"; AGE%; Blffli

200 PRINT: GOTO 140

The following program uses a separate image line:

100 PRINT 99 ENTER A NUMBER (UP TO 10 DIGITS)"
110 INPUT USING 120, A
120 ;##########
130 PRINT "THE DATA WAS EVALUATED LIKE THIS:"
140 PRINT USING 120, A
150 GOTO 100

When you run the program, always input 10-digit numbers
(including sign, decimal point, exponent field, etco).
Otherwise, the data evaluation will probably differ from what
you intended. For further details, read "INPUT USING Edit
Process."

INPUT USING Edit Process

The 8 image' defines the fields which are passed to the standard
input evaluation routines. The image serves as a "mask", in
that only those characters aligned with 19 #" signs are used. For
example:

Image: 91 ########## #####"
Data: "MR .. JONES 1. 334567 uu

Resultant fields: vu MR .. JONES~" and n~1. 33"
(

11 ~ 11 represents a blank space and is used only where necessary
for purposes of illustration or emphasis.)

String Input

All characters in the field are input to the target
variable--including leading and trailing spaces, commas and
quotes. There are no special delimiters.

For example, the table below describes result of the statement

INPUT USING A$, Sl$, 82$

under various conditions ("~n represents a leading or trailing
blank space and is used only where necessary for illustration or
emphasis).

----------rtad10/haell----------

PAGE 6 - 96

MODEL I/III COMPILER BASIC

A$ (Image)

Numeric Input

Data

ABCDEFGHIJK
ABCDEFGHIJK
G-44 L-5
A,B,C,D,E
FIRST SECOND

BASIC KEYWORDS

Result
Sl$ S2$

A
AB
G-44
A,B,
p~~~~

CDEFGHIJ
DEFGHIJ
L-s~~
,D,E,
s·-~~~

The following characters are valid in a numeric field:
Digits 0-9
Decimal point
E (Exponent suffix)
+ and - signs
Blank spaces (They are interpreted as zeroes.)

If a comma is encountered in the input data, evaluation stops
and the current target variable receives the value of the field
up to that point. If there are additional target variables to
be filled, INPUT USING continues evaluation of the input line.
The evaluation continues at the first character following the
current image field.

All other characters are invalid. If an invalid character is
encountered, input stops. The target variable receives the
value of the field up to that point, and an error (INPUT SYNTAX
ERROR #5) is generated.

Even valid characters may terminate a field, if they are used
out of context. The following diagram shows the general form
for a numeric field in which all the elements are valid (note
that spaces may separate any two elements without having any
effect on the evaluation):

----------- lladlOlhaeli----------

PAGE 6 - 97

MODEL I/III COMPILER BASIC BASIC KEYWORDS

ENT

DIGIT

'digit' is one of the characters from O through 9.
'exponent' is a whole number from -64 to +63. The sign is
optional for positive values.

For example, the table below describes result of the statement

INPUT USING A$, Sl, S2%

under various conditions ("-" represents a leading or trailing
blank space and is used only where necessary for illustration or
emphasis).,

Result
A$ (Image) Data Sl S2%
---------- ----------- ----- --------

1234567890 12345 7890
~~~10 12 10 12
######## # -l.234E5 1 -123400 1
100, 2000 100 2000
100,2000 100 O*
.. #### 12345 .. 67890 12345. 6789
1 1 100000 1

* Zero because the '2' after 0
,' is forced into alignment with

the blank space in the image. Compare with the preceding line
in the table.

---------1tafl1elhaeli---------

PAGE 6 - 98

MODEL I/III COMPILER BASIC

-- STATEMENT

INPUT USING from a disk file
Input Formatted Data From Disk File

Sequential access:
INPUT USING# file-unit; image, variable-list

Indexed sequential access:

BASIC KEYWORDS

INPUT USING# file-unit, KEY= key; image, variable-list

Direct access:
INPUT USING# file-unit, KEY= record-number; image,

variable-list

'file-unit' is a numeric expression specifying the
output fileo The file-unit number is assigned when
the file is opened.

'image' specifies the format of the data; it can be a
line number referring to an image statement, or a
string expression containing the image.

•variable-list' specifies the target variables to
receive the data input from the file. Every
variable but the last must be followed by a
comma. There should be no punctuation
after the last variable.

'KEY=key' is used for input from indexed sequential
access files. 'key' is a string expression
containing the sort key.

uKEY=record-number' is used for input from direct
access files. 'record-number' is a numeric
expression specifying the record number.

This statement inputs formatted data from a disk file in a
manner analogous to INPUT USING from the keyboard. The data
should have been written by an analogous PRINT to disk file
statement. The number and type of target variables should match
the number and type of values in the PRINT item-list.

For further details on image specifiers and input stream
editing, see INPUT USING from the Keyboard.

--------lladae ®

PAGE 6 - 99

MODEL I/III COMPILER BASIC BASIC KEYWORDS

Examples

INPUT USING #1; "####### ## ####### #####", A, B, C, D

Inputs values for A, B, C and Dusing the indicated image, from
file-unit #1 ..

INPUT USING #2, KEY=NAME$; FMT$, PAYRAT, EXEMPT%

Inputs values for PAYRAT and EXEMPT% from the record indexed by
the contents of NAME$, using the image in FMT$, from file-unit
#2.

100 ;####### ##

200 INPUT USING #3, KEY=RECORD%; 100, PAYRAT, EXEMPT%

Inputs values for PAYRAT and EXEMPT% from the direct-access
record specified by RECORD%, using the image in line 100, from
file-unit #3 ..

Sample Program

See the chapter on data files.

----------ltadaelllaeli----------
PAGE 6 - 100

MODEL I/III COMPILER BASIC BASIC KEYWORDS

®--------------
-- FUNCTION --

INPUT$
Input a Character String

INPUT$(length)
'length' is a numeric expression in the range

of 1 to 255 ..

INPUT$ causes the program to stop execution until the operator
inputs a string with the 'length' specified. For example,
INPUT$(3) causes the program to stop until the operator inputs 3
characters and presses <ENTER>, after which the program
immediately resumes execution ..

The operator can input less than the 'length' required by
pressing <ENTER> after completing the input.

Examples

A$= INPUT$(5)

The program stops until the operator presses either 5 characters
(or less than 5 characters) followed by <ENTER>. This string is
assigned to A$..

IF INPUT$(3) = "YES" THEN 500

The program stops until the operator presses 3 characters (or
less than 3) followed by <ENTER> .. After <ENTER> is pressed, the
Computer executes the rest of the IF/THEN statement.

LPRINT INPUT$(20)

At this line, the program stops to allow the operator to input a
maximum of 20 characters. These characters are then printed on
the line printer.

----------ftad1elhaell ----------
PAGE 6 - 101

MODEL I/III COMPILER BASIC BASIC KEYWORDS

Sample Program

80 REM *·*·*· SAMPLE PROGRAM DEMONSTRATING INPUT$ ~ .. ~*
90 REM

100 REM ~-*~· MAILING LIST -····· .. LAST TWO ENTRIES ~--!Ii··*
1 Hll REM
120 PRINT "TYPE THE STATE -- MUST BE TWO CHARACTERS"
130 A$ -- INPUT$(:2)
140 PRINT 11 TYPE THE ZIP CODE __ MUST BE 5 CHARACTERS 11

150 8$ - INPUT$(5)
160 ADDRESS$ - A$ & II II & 8$: PRINT ADDRESS$

*RU
TYPE THE STATE -- MUST BE TWO CHARACTERS
TX
TYPE THE ZIP CODE -- MUST BE 5 CHARACTERS
76118
TX 76118
STOP LINE 160

----------- lladlOlhaeli-----------
PAGE 6 - 102

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-- FUNCTION --

INT
CONVERT TO INTEGER VALUE

INT(number)
'number' is any numeric expression.

INT returns the largest whole number that is not greater than the
'number'. Unlike CVI, the number is NOT limited to the range
[-32768, 32767].

Examples

A= INT(X)

Gets the integer value of X and stores it in A.

PRINT INT(2 .. 5)

Prints 2.

PRINT INT(-2 .. 5)

Prints -3.

Sample Program

80 REM *** SAMPLE PROGRAM DEMONSTRATING INT***
90 HEM

100 PRINT "ENTER A 6-DIGIT POSITIVE NUMBER LIKE XX .. XXXX"
110 INPUT X
120 IF X<0 THEN 100
130 A= INT((X*100) + 0A5) / 100
140 PRINT X; "ROUNDED TO TWO DECIMAL PLACES IS"; A
150 GOTO 100

*f<U
ENTER A 6-DIGIT POSITIVE NUMBER LIKE XX.XXXX
'? 45 .. 8976
45.8976 ROUNDED TO TWO DECIMAL PLACES IS 45.9

------------11 lhae~--------
PAGE 6 - 103

MODEL I/III COMPILER BASIC

-- STATEMENT -

INTEGER
Define Variables as Integers

INTEGER*2 letter list

BASIC KEYWORDS

*2 represents the 2-byte length of the integers.
This may be omitted.

'letter list' is a sequence of individual letters
or letter ranges; the elements of the list must
be separated by commas. A letter range is in the
form:

letterl-letter2
If omitted, all variables will be defined as
integers ..

Ordinarily, BASIC classifies all variables as real unless a
definition statement or type declaration tag tells it to do
otherwise. INTEGER changes this default from real to integer.

If a 'letter list' is used, only variable names beginning with
the letters specified will be defaulted. Integer values must be
in the range of -32768 to 32767. Thet are stored internally in
two-byte, two's complement form.

INTEGER cannot be used after an executable statement.

Note: For more information, see the chapter on BASIC Concepts.

Examples

INTEGER A, I, N

After the above line, a-11 variables beginning with A, I, or N
will be treated as integers. For example, Al, AA, and 13 will
be integer variables. However, Al$, AA$, and 13$ would still be
string variables, because the type-declaration characters always
override the INTEGER statement.

INTEGER I.;..N

---------11 18
®

PAGE 6 - 104

MODEL I/III COMPILER BASIC BASIC KEYWORDS @) ____________ _

Causes any variable beginning with the letters I through N to be
treated as integer variable.

INTEGER

All variables in the program will be treated as integers unless
they have a type declaration tag, or there is a STRING or REAL
statement following this.

Sample Program

80 REM *** SAMPLE PROGRAM DEMONSTRATING INTEGER***
90 HEM

100 INTEGER W
110 Z = 1.9 W = 1u9
120 PRINT "THE VALUE OF REAL NUMBER Z IS"; Z
130 PRINT "BUT THE VALUE OF INTEGER WIS"; W

*RU
THE VALUE OF REAL NUMBER Z IS 1.9
BUT THE VALUE OF INTEGER WIS 1
STOP LINE 1:m

PAGE 6 - 105

MODEL I/III COMPILER BASIC

-- STATEMENT --

KILL
Kill Disk File

KILL filespec
'filespec' is a string constant or a string

variable representing a TRSDOS file
specification. If it is a constant, it
must be enclosed in quotes.

BASIC KEYWORDS

When the KILL statement is executed, the 'filespec' will be
deleted from the disk directory. It may no longer be accessed
and will be replaced by another file. KILL will not prompt you
before deleting the file, so you might want to write a prompt as
part of your program.

Examples

KILL "FILE/BAS:l"

When this statement is executed, the file FILE/BAS from the disk
in drive 1 will be deleted from the disk.

KILL A$

The filespec stored as A$ is deleted from the disk.

Sample Program

5 REM *** SAMPLE PROGRAM DEMONSTRATING KILL***
6 REM

10 PRINT "INPUT THE FILE SPECIFICATION YOU WANT TO KILL"
15 PRINT "YOU WILL NOT BE PROMPTED -- "
17 PRINT "THE FILE WILL IMMEDIATELY BE DELETED"
18 PRINT "WITH NO WAY TO RECOVER IT"
20 INPUT A$
:30 ~\ILL A$
40 GOTO 10

PAGE 6 - 106

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-- FUNCTION --

LEN
Get Length of String

LEN(string)
'string' is a string constant or a string variable.

LEN returns the current number of characters in the 'string'o

Examples

PRINT LEN ("MARY")

Prints 4 ..

PRINT LEN ("MARY HAD A")

Prints 10 ..

X = LEN(SENTENCE$)

Stores the number of characters in SENTENCE$ in X.

Sample Program

80 REM *** SAMPLE PROGRAM DEMONSTRATING LEN***
90 REM

100 PRINT "INPUT WORDS OR A SHORT SENTENCE"
110 INPUT A$
120 PRINT "YOUR SENTENCE HAS"; LEN(A$); "CHARACTERS"
130 GOTO 100

*RUN
INPUT WORDS OR A SHORT SENTENCE
? THIS IS A BIRTHDAY SONG. IT ISN'T VERY LONG.
YOUR SENTENCE HAS 44 CHARACTERS

----------11 If)
®

PAGE 6 - 107

MODEL I/III COMPILER BASIC BASIC KEYWORDS

®--------------
-- STATEMENT --

LINE INPUT
Input Line of Data

LINE INPUT LENGTH=number, PROMPT=string; string variable
The blank space in 'LINE INPUT' is optional.
'string' is a string constant or a string variable.

PROMPT=string; may be omitted.
'string-variable' is the target variable

for the input data.
'number' is an integer value specifying the maximum

number of characters to input.
LENGTH=number, is optional. If omitted, the
default value of 255 is used.

When executed, LINE INPUT displays the prompt or a question
mark. When you press <ENTER>, LINE INPUT accepts the line into
the target variable.

Special Keys During INPUT

<ENTER>
shift<
<SPACEBAR>
<-

Ends the line at the current cursor position.
Erases the line and starts over.

<BREAK>

Advances the cursor and types a blank space.
Backspaces the cursor and erases character.
Halts the LINE INPUT and gives control to the
<BREAK> handler.

All other keys are accepted as data for the input line.

Examples

LINE INPUT TXT$
Inputs a line of characters into TXT$.

Sample Program

10 REM *** LINE INPUT***
20 DIM TXT$255
30 PRINT "TYPE IN A LINE OF TEXT--ANY CHARACTERS AT ALL"

----------- ltad1e Ii------------
PAGE 6 - 108

MODEL I/III COMPILER BASIC

40 LINE INPUT TXT$
50 PRINT "HERE'S HOW THE DATA IS SAVED"
60 PRINT n I vu; TXT$; °' 9 vu

70 PRINT: GOTO 30

Input Stream Edit Process

BASIC KEYWORDS

Unlike INPUT, LINE INPUT does not ignore leading blanks. Every
character you type (except the special keys listed previously)
is accepted as data into the target variable. There are no
invalid characters, and there are no terminators except for
<ENTER> and <BREAK>.

For example, the table below describes the result of the
statement

LINE INPUT USING X$

under various conditions (<ENTER> represents a carriage return;
n~n represents a leading or trailing blank space and is used
only where necessary for illustration or emphasis).

Data stream

J.D. POWERS <ENTER>
~~~JoD. POWERs~~~ <ENTER> 
FIRST, SECOND, THIRD <ENTER> 
HE SAID "HI" <ENTER> 
HE SAID, vuHI, JACK 11 <ENTER> 
TWO DOUBLE-QUOTES VVII 

10 REM *** LINE INPUT*** 
20 DIM TXT$255 

Result in X$ 

'J .. D .. POWERS' 
J .. D .. POWERS 

'FIRST, SECOND, THIRD' 
'HE SAID "HI 98

' 

'HE SAID, "HI, JACK"' 
ff TWO DOUBLE-QUOTES II BU u 

30 PRINT "TYPE IN A LINE OF TEXT--ANY CHARACTERS AT ALL": 
40 LINE INPUT TXT$ 

*HU 

50 PRINT "HERE'S HOW THE DATA IS SAVED" 
60 PRINT 11

'"; TXT$; 11
'

11 

70 PRINT: GOTO 30 

TYPE IN A LINE OF TEXT--ANY CHARACTERS AT ALL 
? THIS IS A LINE OF TEXT CONTAINING SOME CHARACTERS,m%&#. 
HERE'S HOW THE DATA IS SAVED 
'THIS IS A LINE OF TEXT CONTAINING SOME CHARACTERS,.%&#.' 

® 

PAGE 6 - 109 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

------------TRS-BO@ ___________ _ 

STATEMENT -

LINE INPUT from a disk file 
Input Line of Data from Disk File 

Sequential access: 
LI~E INPUT# file-unit1 string-variable 

Indexed sequential access~ 
LINE INPUT# file-unit, KEY= key; string-variable 

Direct access: 
LINE INPUT# file~unit, KEY= record-number1 

string-variable 

The blank space in 'LINE INPUT' is optional. 
'file-unit' is a numeric expression specifying the 

output file. The file-unit number is assigned when 
the file is opened. 

'string-variable' is the target variable for 
the input data. 

'KEY=key' is used for input from indexed sequential 
access files. 'key' is a string expression 
containing the sort key. 

'KEY=record-number' is used for input from direct 
access files. 'record-number' is a numeric 
expression specifying the re.cord number. 

This statement inputs a line of data from a disk file and stores 
it in a string variable. For disk input, a line of data is 
terminated by any of the following: 
. A carriage return . 
. Reception of 255 characters without a carriage return . 
. End of file. 

The input stream edit process is like that of LINE INPUT from 
the keyboard. 

Examples 

LINE INPUT #1; A$ 

----------ltadaelhaeli----------
PAGE 6 - 110 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 
-------------TRS-BO@ ___________ _ 

Inputs a value for A$ from file-unit #1. 

LINE INPUT #2, KEY=NAME$; COMMENTS$ 

Inputs a value for COMMENT$ from the record indexed by the 
contents of NAME$, from file-unit #2. 

LINE INPUT #3, KEY=RECORD%; COMMENT$ 

Inputs a value for COMMENT$ from the direct-access record 
specified by RECORD%, from file-unit #3. 

Sample Program 

See the chapter on data files. 

----------rtadaelllaell----------
PAGE 6 - 111 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-- FUNCTION --

LOG 
Compute Natural Logarithm 

LOG(number) 
s number' is a numeric expression., 

LOG returns the natural logarithm of the 'number'G This is the 
inverse of the EXP function, so X = LOG(EXP(X))o To find the 
logarithm of a number to another base B, use the formula LOG 
B(X) = LOG E(X)/LOG E(B). For example, LOG(32767)/LOG(2) 
returns the logarithm to base 2 of 327670 

The result is always a real numbere 

Examples 

B = LOG(A) 

Computes the value of LOG(A) and stores it in B. 

PRINT LOG(3.14159) 

Prints the value 104473. 

Z = 10 * LOG(P2/Pl) 

Performs the indicated calculation and assigns it to Zo 

Sample Program 

10 PRINT "INPUT A NUMBER" 
:20 INPUT N 
30 PRINT "THE NATUHAL. LOGARITHM OF 11

; N; 11 IS 11
; LOG(N) 

'+0 GOTO 10 

----------rtadaelhaell----------

PAGE 6 - 112 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-- FUNCTION 

LOGl0 
Compute Base 10 Logarithm 

LOGl0(number) 
'number' is any numeric expression 

LOGl0 returns the base 10 logarithm of the 'number'. This is 
the inverse of the EXPl0 function, so X=LOGl0(EXPl0(X)). 

Examples 

PRINT LOG10(100) 

Prints 2. 

X = LOGl0(Y) 

Assigns the value LOGl0(Y) to X. 

X = 10/LOGl0(X + 2A) 

Performs the calculation and assigns the results to X. 

Sample Program 

80 REM *** SAMPLE PROGRAM DEMONSTRATING LOG10 *** 
90 HEM 

100 PRINT "INPUT A NUMBER" 
11.0 INPUT N 
120 PRINT N; " - 10 TO THE POWER OF"; LOG10(N) 
130 GOTO 100 

*RU 
INPUT A NUMBER 
? 56 
56 = 10 TO THE POWER OF 1.74819 

------------1tad1e lhaell----------
PAGE 6 - 113 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-- STATEMENT --

LPRINT 
Print on Line Printer 

LP:R.INT item-list 
'item-list' contains e}{pressions to be evaluated and 

output to the printer. 'item-list' may also 
contain TAB functions .. Every item but the last 
mustbe followed by a semi-colon or comma .. 

A: 5,emL-colon leav<2s the carriage in its current 
position; a comma advances the carriage to the next 
print zone .. 

Unless a semi-colon or comma follows the t 
item, LPRINT will output a carriage return 
after the last character. is displayed .. 

This statement outputs to the printer, beginning at the current 
carriage position. It works just like PRINT, except for those 
details specific to the video display .. 

Before using LPRINT, you must initialize the printer with the 
TRSDOS FORMS command. This establishes the line-width, 
page-length, and other parameters. See FORMS in the TRSDOS 
Reference Manualo 

Control Codes 

The following control codes are intercepted and handled by 
TRSDOS: 

Code 
Hex. 

9 
OA 

QC 

Dec. 

09 
10 

12 

Action Taken 

Tabs to next eight column boundary. 
Ignored (not needed by Radio Shack 
line printers). 
Form feed. 

PAGE 6 - 114 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 
@) ____________ _ 

All other codes are sent unchanged to the printer. 

Sample Program 

80 REM *** SAMPLE PROGRAM DEMONSTRATING LPRINT *** 
90 HEM 

100 REM *** CHECK THAT LINE PRINTER IS CONNECTED AND ON-LINE*** 
110 REM 
120 PRINT "INPUT WHAT YOU WANT PRINTED ON THE LINE PRINTER" 
130 INPUT A$ 
l.Li-0 L.PRINT A~; 
1~30 GOTO 1:20 

THIS IS WHAT I WANT THE LINE PRINTER TO PRINT!!! 

*RU 
INPUT WHAT YOU WANT PRINTED ON THE LINE PRINTER 
? THIS IS WHAT I WANT THE LINE PRINTER TO PRINT!!! 

----------llad1elllaeli-----------

PAGE 6 - 115 



MODEL I/III COMPILER BASIC 

-- STATEMENT -

LPRINT USING 
Print Using Format on Line Printer 

LPRINT USING image, item-list 
'image' specifies the format of the data; it can 

be a line number referring to an image 
statement, or a string expression containing 
the image specifiers. 

'print-function' is an optional use of TAB. 
If omitted, printing starts at the current 
carriage position. 

'item-list' contains expressions to be evaluated 

BASIC KEYWORDS 

and output to the printer. TAB may be anywhere in 
the item list. Every item but the last 
must be followed by a comma or semi-colon. 
However, a comma or semi-colon after the last 
item will suppress the automatic carriage return 
after the last character is printed. The 
carriage will remain in the next position 
following the last character printed. 

This statement outputs to the printer, beginning at the current 
carriage location. Unlike LPRINT, it outputs formatted data, 
according to an image specification contained on a separate 
program line or in a string variable. 

LPRINT USING is just like PRINT USING, except for the special 
features related to the video display. 

Before using LPRINT, you must initialize the printer with the 
TRSDOS FORMS command. This establishes the line-width, 
page-length, and other parameters. See FORMS in the TRSDOS 
Reference Manual. 

Control Codes 

The following control codes are intercepted and handled by 
TRSDOS: 

---------lladle 

PAGE 6 - 116 



MODEL I/III COMPILER BASIC BASIC KEYWORDS @ ____________ _ 

Code 
Hex .. 

9 
OA 

oc 

Dec .. 

09 
10 

12 

Action Taken 

Tabs to next eight-column boundarye 
Ignored (not needed by Radio Shack 
line printers) .. 
Form feed .. 

All other codes are sent unchanged to the printer. 

Sample Program 

80 REM *** SAMPLE PROGRAM DEMONSTRATING LPRINT USING*** 
90 REM 

100 TOTAL .... 0 
110 ; >tl:t~~t~t#~t .. ~ttF 
12(2'.I ; > ##tl=tl:tl:H:1:1:tt:M: 
:1.30 FOR I= 1 TO 25 
140 N = RND(0) * 99 
150 LPRINT USING 110, N 
160 TOTAL= TOTAL+ N 
170 NEXT I 
1 B0 L PR I NT us I N~:i 12(1-> 11 .......................................... 11 

190 LPRINT USING 110~ TOTAL 

---------1tad10/haell---------
PAGE 6 - 117 



MODEL I/III COMPILER BASIC 

-- STATEMENT -

ON BREAK GOTO 
Enable a <BREAK> Handling Routine 

ON BREAK GOTO line number 

BASIC KEYWORDS 

Normally, when you hit the <BREAK> key while executing a 
program, BASIC stops your program and puts you in the command 
mode. You then must start your program at the beginning again .. 

You might want BASIC to handle the <BREAK> key in a different 
way .. ON BREAK GOTO tells BASIC to go to the line number you 
specify whenever the <BREAK> key is pressed .. 

Note: Also see RESET BREAK 

Example 

ON BREAK GOTO 500 

Whenever a <BREAK> key is pressed, c.ontrol will go to line 
number 500 .. 

Sample Program 

10 REM *** ON BREAK GOTO AND RESET BREAK STATEMENTS*** 
20 PRINT CHR$(28); CHR$(31) 
30 ON BREAK GOTO 160 
40 PRINT "I'M TRAPPING THE <BREAK> KEY NOW" 
50 PRINT "PRESS <BREAK> WHILE I COUNT TO 1000" 
60 FOR I= 1 TO 1000 
70 PR I NT CRT< 8, 15) ; I 
80 NEXT I 
90 RESET BREA~\ 

100 PRINT "NOW BREAK IS RESET" 
110 PRINT "TRY PRESSING <BREAK> WHILE I COUNT TO 1000" 

----------1tad1elhaeli----------
PAGE 6 - 118 



MODEL I/III COMPILER BASIC BASIC KEYWORDS @ ___________ _ 

120 FOR I= 1 TO 1000 
130 PRINT CRTCB,15); I 
140 NEXT I 
150 STOP 
160 PRINT CHRS(28); CHRS(31); "YOU PRESSED <BREAK>" 
170 GOTO 90 

I 1 M TRAPPING THE <BREAK> KEY NOW 
PRESS <BREAK> WHILE I COUNT TO 1000 

352 

YOU PRESSED <BREAK> 
NOW BREAK IS RESET 
TRY PRESSING <BREAK> WHILE I COUNT TO 1000 

1000 
STOP LINE 150 

---------rtad1elhaeli---------
PAGE 6 - 119 



MODEL I/III COMPILER BASIC 

-- STATEMENT -

ON ERROR GOTO 
Set Up Error-trapping Routine 

ON ERROR GO TO line number 
ON ERROR GOTO line number 

BASIC KEYWORDS 

ON ERROR GO TO or ON ERROR GOTO (the space is optional) allows 
you to set up an error-trapping routine to get the Computer to 
handle the error the way you want it handled .. Normally, you 
have a particular error in mind when you use the ON ERROR GOTO 
statement .. 

This statement is often used to prevent error messages from 
confusing an operator who is a non-programmer .. For example, if 
the operator inputs the wrong data type in any of your input 
statements, the Computer will break program execution and print 
an Input Syntax error message. To prevent this from happening 
you can set up an error trapping routine like the one 
demonstrated in the sample program .. 

The ON ERROR GOTO statement must be executed before the error 
occurs or it will have no effect. Once it has "trapped" an 
error, ON ERROR GOTO is disabled. You must use another ON ERROR 
GOTO statement to trap the next error. 

A good way to use ON ERROR GOTO is to place it before any 
statement which might cause an error. If no error occurs, the 
next ON ERROR GOTO statement will supersede it. 

Note: Also see ERR, ERROR, and RESET ERROR 

Example 

ON ERROR GOTO 1500 

If an error occurs in your program anywhere after this line, 
control will branch to line 1500. 

® 

PAGE 6 - 120 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

Sample Program 

80 REM *** SAMPLE PROGRAM DEMONSTRATING ON ERROR GOTO*** 
90 REM 

100 ON ERROR GOTO 140 
110 PRINT "INPUT A WORD" 
120 INPUT A 
1:30 STOP 
140 IF ERR<> 5 THEN ERROR ERR 
150 PRINT "SORRY, YOU HAVE TO INPUT A NUMBER" 
160 REM 
170 REM *** NEXT STATEMENT RE-ENABLES ON ERROR GOTO*** 
180 REM 
190 ON ERROR GOTO 140 
200 GOTO 120 

*RU 
INPUT A t.-JORD 
? GOOBER 
SORRY, YOU HAVE TO INPUT A NUMBER 
? 67 
STOP LINE 130 

PAGE 6 - 121 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-------------TRS-ao@ ___________ _ 

-- STATEMENT 

ON .... GOSUB 
Test and Branch to Subroutine 

ON test-value GOSUB line number, line number, 
'test-value' is a numeric expression. 

ON ..• GO SUB or ON .... GOSUB (the space is optional) is a multi-way 
branching statement like ON GOTO, except that control passes to 
a subroutine rather than just being shifted to another part of 
the program. For further information, see ON GOTO 

Example 

ON Y GOSUB 1000, 2000, 3000 

This statement will first evaluate Y. If Y = 1, the subroutine 
beginning at line 1000 will be called. If Y = 2, the subroutine 
at 2000 will be called. If Y = 3, the subroutine at line 3000 
will be called. 

Sample Program 

80 REM *** SAMPLE PROGRAM DEMONSTRATING ON ... GOSUB *** 
90 REM 

100 PRINT "CHOOSE 1, 2, OR 3" 
110 INPUT I 
120 ON I GOSUB 500, 600, 700 
130 STOP 
500 PRINT "SUBROUTINE #1" RETURN 
600 PRINT "SUBROUTINE #2" : RETURN 
700 PRINT "SUBROUTINE #3" RETURN 

*RU 
CHOOSE 1, 2, OR 3 
? 3 
SUBROUTINE #3 
STOP LINE 130 

---------ltadaolhaeli---------
PAGE 6 - 122 



MODEL I/III COMPILER BASIC 

-- STATEMENT -

ON ..... GOTO 
Test and Branch to Different Program Line 

ON test-value GOTO line number, line number, 
'test-value' is a numeric expression .. 

BASIC KEYWORDS 

ON .... GO TO or ON ..... GOTO (the space is optional) is a multi-way 
branching statement that is controlled by test value. 

When the Computer executes ON GOTO, it first evaluates 
'test-value' and, if it is a real number, converts it to an 
integer .. We'll refer to this integer as J. The Computer then 
transfers control to the Jth line number in the ON GOTO 
statement. For example, if J = 1, the Computer transfers 
control to the first line number following GOTO; if J = 5, the 
program control drops to the fifth line number. 

If 'test value' is smaller than one or greater than the number 
of line numbers in the list, the computer will proceed to the 
next program line .. 

Examples 

ON A GOTO 100, 200, 300 

If the integer of A equals 1, program control drops to 100 .. 
If it equals 2, program control drops to 200. 
If it equals 3, program control drops to 300. 

ON X GOTO 500, 520, 540, 550, 560 

If integer A equals 1, program control drops to line 500. 
If it equals 2, program control drops to line 520. 
If it equals 3, program control drops to line 540. 
If it equals 4, program control drops to line 550. 
If it equals 5, program control drops to line 560. 

PAGE 6 - 123 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-------------TRs-eo@ ___________ _ 

Sample Program 

80 REM *** SAMPLE PROGRAM DEMONSTRATING ON .•. GOTO *** 
90 REM 

100 PRINT "DO YOU WANT TO --- " 
110 PRINT " ( 1) INPUT FILES" 
120 PRINT" (2) REVISE FILES" 
130 PRINT" (3) LIST FILES" 
140 PRINT "INPUT 1, 2, OR 3" 
150 INPUT A 
160 ON A GOTO 500, 600, 700 
170 GOTO 100 
500 PRINT "INPUT FILES PROGRAM" : STOP 
600 PRINT "REVISE FILES PROGRAM" : STOP 
700 PRINT "LIST FILES PROGRAM" : STOP 

RUN 
DO YOU WANT TO --

(1) INPUT FILES 
(2) REVISE FILES 
(3) LIST FILES 

INPUT 1, 2, OR 3 
? 3 
LIST FILES PROGRAM 
STOP LINE 700 

----------llad1elhaell----------
PAGE 6 - 124 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-- STATEMENT --

OPEN 
Open Disk File 

OPEN #file-unit, filer MODE=rn, TYPE=t, LENG'rH=l, KEY=k 

'file-unit' is a numeric expression; while the file is 
open, this number will be used to reference that 
file for disk I/0 statements and functions .. 

'fi ' a string expression containing a TRSDOS file 
specification for the file to be opened. If 'file' 
is a string constant, it must be enclosed in double 
quotes., 

'MODE=m• specifies the access mode. 'm' is one of the 
following: 
R only 
E Extend (i.eG, sequential write beginning at the 

u 

w 
'TYPE=t' 

fol 

end of the file) 
Update (i .. e.,, read or write to an existing 
direct or ISAM file) 

te 
specifies the file-type. 't' is one of the 

D, R rect (random) access file (i .. e .. , records 

I 

s 

referenced by record number) 
Indexed sequential access file (ISAM, i.e., 
records are referenced by a sorting key) 
Sequential (i.e., records are referenced in 
sequence) 

'LENGTH=l' specifies the length of data in each 
record.. ( BASIC adds any necessary overhead) .. 
'l' is a numeric exoression with a value from 0 
255. ~ 

are 

to 

A value of O for 1 implies a record length of 256 .. 
If 'LENGTH=l 9 is omitted and the file type is 
sequential ( 'TYPE=S'), variable-length records are 
used .. 

8 KEY=k' specifies the length of the key. 'k' is a 
numeric expression from 1 to 127 

'KEY=k' must be used when the file type is ISAM 
('TYPE=I'), and must be omitted for all other 
file types 

Note: MODE, TYPE, LENGTH, and KEY may appear in any 

® 

PAGE 6 - 125 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

------------TRS-BO@ ___________ _ 

order .. 

This statement sets up the required buffers and control blocks 
for disk file I/0 .. The file specified by 'file' is given a 
file-unit number. While the file is open, this number is used 
to reference the file .. 

A file cannot be opened under two file-units at once. 

The parameters in the OPEN statement determine the file type, 
access mode, record length, and other specific features. See 
"Data Files" for a discussion of file access under RSBASIC .. 

Examples 

OPEN #1, "DATA/D", MODE=R, TYPE=D, LENGTH=32 

Opens the file "DATA/D" for direct access, read-only, with a 
record length of 32. File-unit #1 will be used. If the file 
was created with a different record length, an error will occur. 

OPEN #2, "MAILLIST/ISM", MODE=U, TYPE=!, LENGTH=l28, KEY=25 

Opens the file "MAILLIST/ISM" for updating. The file must 
already exist on one of the diskettes in the system or an error 
will occur. The file must be indexed-sequential, with a record 
length of 128 and a key length of 25. File-unit #2 will be 
used. 

OPEN#( BASE%+ CURNT% ), FILE$, MODE=E, TYPE=S 

Opens the file specified by the contents of FILE$ for sequential 
writing beginning at the end of the file. The file-unit 
specified by the expression (BASE%+ CURNT%) will be used. 

Sample Program 

See the chapter on data files. 

------------11 lllaeli-----------
PAGE 6 - 126 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 
---------------TRS-BO@ ____________ _ 

-- FUNCTION --

OR 
Calculate Logical OR 

OR (number, number) 
'number' is any number in the range of 

(-32768, 32767]. 

OR is a logical operation performed on the binary 
representations of the two 'numbers'. OR searches the bits of 
each number to see if either or both are set to 1. A binary 1 
is returned if either or both bits are l; a O is returned only 
if neither bit contains a 1. 

First Second Bit 
Number Number Returned 

1 1 1 
1 0 1 
0 1 1 
0 0 0 

If 'number' is a real number, OR will convert it to an integer. 
The binary number returned is always expressed 
as an integer. 

Note: Also see AND and XOR. 

Examples 

PRINT OR(l92,3) 

Prints 195. The operation is performed as follows: 

Integer 
192 

3 

195 

Binary 
Representation 

11000000 
00000011 

11000011 

----------llat11e/llaell----------
PAGE 6 - 127 



MODEL I/III COMPILER BASIC 

PRINT OR(l95, 3) 

Prints 195: 

Integer 
195 

3 

195 

Sample Program 

Binary 
Representation 

11000011 
00000011 

11000011 

BASIC KEYWORDS 

10 REM *** SAMPLE PROGRAM DEMONSTRATING OR*** 
20 REM 
30 C$ :::: 1111 

40 PRINT "TYPE A SENTENCE WITH UPPER AND LOWER CASE LETTERS" 
50 INPUT A$ 
60 FOR X:::: 1 TO LEN(AS) 
70 BS= SEGS(AS,X,1) 
80 D:::: ASC<BS) 
90 C$ = C$ & CHRS(OR(32,D)) 

100 NEXT X 
110 PRINT "HERE IT IS IN ALL LOWER CASE "; C$ 
120 GOTO 30 

*RU 
TYPE A SENTENCE WITH UPPER AND LOWER CASE LETTERS 
? This is a Sentence usin9 UPPER and lower Case Letters. 
HERE IT IS IN ALL LOWER CASE: this is a sentence using UPPer an 
d lower case letters. 

-----------11 lhaeli------------
PAGE 6 - 128 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 
------------TRS-BO@ ___________ _ 

-- FUNCTION -

POS 
Search for Specified String 

POS(string 1, string 2) 
'string' is a string constant or a string variable: 

'string i• is the string to be searched. 
'string 2' is the substring you want to search for .. 

Examples 

In these examples, A$= "LINCOLN". 

POS (A$, "INC") 

Returns 2. 

POS (A$, "COLN" ) 

Returns 4. 

POS(A$, "12") 

Returns 0. 

POS ( A$ , "LI NCOLNABRAHAM" ) 

Returns 0. 

Sample Program 

80 REM ,i(••!it·~· SAMPLE PROGRAM 
90 REM 

100 REM *·*·*· SEARCH M1\ IL I NG 
110 REM 
:1.20 COUNTEf< -·- 0 
130 READ ADDRESS$ 
14-0 IF ADDRESS$ = 11011 THEN 180 
150 IF POS<ADDRESS$, 11 761 11

) 
.,_ 

DEMONSTRP.\T I NG 

LIST FOR NO. 

0 THEN 130 

POS **iE· 

OF 761## ZIP CODES *** 

---------- llad1elhaell----------

PAGE 6 - 129 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

(!~ -------------

160 COUNTER= COUNTER+ 1 
170 GOTO 13~~ 
180 PRINT "NUMBER OF TARRANT COUNTYu, TX ADDRESSES IS"; COUNTER STOP 
190 DATA "1000 TWO TANDY CENTER, FORT WORTH, TX 76102" 
200 DATA "16622 SOUTH CENTRAL EXPRESSWAY, RICHARDSON, TX 75080" 
210 DATA "BOX 30328 TCU, FORT WORTH, TX 76129" 
220 DATA "10 SYLVAN DRIVE, WESTFIELD, MA 01085" 
230 DATA b5951 GORHAM DRIVE, BURLESON, TX 76148" 
240 DATA II 0 11 

*l~U 
NUMBER OF TARRANT COUNTY", TX ADDRESSES IS 3 
STOP LINE :t80 

-----------llad1elhaeli----------
PAGE 6 - 130 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

cf_§---------------
-- STATEMENT --

PRINT 
Print on Video Display 

PRINT item-list 
'item-list' contains expressions to be evaluated and 

output to the video display. 'item-list' may 
also contain any of the special print functions 
listed below. Every item but the last must be 
followed by a semi-colon or comma. 

A semi-colon leaves the cursor in its current 
on; a comma advances the cursor to the next 

t zone (see description ). 

Unless a semi-colon or comma follows the last 
item, PRINT will output a carriage return 
after the last character is splayed. 

This statement outputs to the display, beginning at the current 
cursor positiono It outputs string data character-for-character, 
with no alteration, and modifies numeric data according to a 
default format described later on. 

The punctuation between items (semi-colons or commas) determines 
the spacing between the text as it is displayed. A semi-colon 
produces no extra space, while a comma advances the cursor to 
the next print zone. The print zones are: 

COLUMNS 
!ZONE 11 
Io 15 

Examples 

PRINT A/ 3 

I
ZONE 21 
16 31 

Displays the result of A/B. 

PRINT "THE SUM ISuu; A+ B 

I 
ZONE 3

1

1 

32 47 

PAGE 6 - 131 

® 

I 
ZONE 41 
48 63 I 

ZONE 51 
64 79 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

®--------------
Displays the message in quotes followed by the result of A+B. 

PRINT "NAME", "AGE", "PHONE°' 

Displays the three headings in three successive print zones. 

Cursor Motion and Print Positions 

Whenever a character is printed in column 63, the cursor wraps 
around to column O on the next row. Whenever a character is 
printed in column 63 on the bottom row (15) of the display, the 
display scrolls up, and the cursor returns to column O of row 
15. Scrolling also occurs when a carriage return or line-feed is 
printed while the cursor is anywhere on the bottom row. 

(Scrolling: The text in row 1 is moved to row 0, the text in row 
2 is moved to row 1, ... the text in row 15 is moved to row 14. 
The row 15 is then filled with blanks.) 

The current cursor position determines where a particular item 
will be printed. In general, the current cursor position 
immediately follows the last character printed. However, there 
are several ways to move the cursor before printing an item. 

Semi-Colons and Commas 

When semi-colons are used as separators in the item list, each 
item is printed immediately after the last item printed. When 
commas are used as separators, the cursor advances to the next 
print zone after printing each item. 

For example: 

10 DATA 19 FIRST", 100 .. 100, "SECOND", 1234 .. 567, "END", 0 
20 PRINT "DEMO OF PRINT WITH SEMI-COLONS IN ITEM-LIST" 
30 READ TXT$, NMBR 
40 PRINT TXT$; NMBR; 
50 IF TXT$ <> "END" THEN 30 
60 RESTORE 
70 PRINT: PRINT "DEMO OF PRINT WITH COMMAS IN ITEM-LIST" 
80 READ TXT$, NMBR 
90 PRINT TXT$, NMBR, 

100 IF TXT$ <> "END" THEN 80 

Commas provide a convenient way of outputting tables to the 
display. The tables can contain up to five columns: 

----------1tad1e lhaell------------
PAGE 6 - 132 



MODEL I/III COMPILER BASIC 

10 PRINT UUN", "N**2", DUN**3", 18 N**4", 11 N**5" 
20 FOR N = 1 TO 5 STEP .5 
30 PRINT N, N**2, N**3, N**4, N**5 
40 NEXT N 

CRT and CRTR 

BASIC KEYWORDS 

There are two special print functions for positioning the 
cursor. CRT moves it to an absolute row-column location; CRTR 
moves it to a relative row-column location, specified as an 
offset from the current row-column location. For syntax 
details, see CRT and CRTR. 

Output Format for Numbers 

. The value is rounded to a maximum of six significant 
digits (leading and trailing zeros are suppressed) . 

. After rounding, if the value is smaller than -999999 or 
greater than +999999, it is displayed in E-format, e.g., 

1.1 E6 for the value 1100000 
. After rounding, if the value is greater than -0.0000001 

and less than +0.0000001, it is displayed in E-format, 
e.g.., 

1.1 E-7 for the value 0.00000011 
. Numbers between -1 and +l which are not displayed in 

E-format are ~lways displayed with a zero ahead of the 
decimal point, e.g., 

0.05 for the value .05 
. A single trailing space is always added to 

the number. A leading space is added if the number is 
positive and greater than zero. 

Note: The PRINT USING statement lets you override these rules. 

String Output 

PRINT outputs in the scroll-mode. That means you can output any 
of the scroll-mode characters, including control characters. 
For a complete list of characters available, see the TRSDOS 
Reference Manual. 

To send a character or string of characters, store the 
character(s) in a string variable and PRINT the variable. Or 
you can use the CHR$ and STRING$ functions. For example: 

-----------1tad1e lhaeli----------
PAGE 6 - 133 



MODEL I/III COMPILER BASIC 

A$= UB*****DB 
PRINT A$ 

produces the same output as 

PRINT STRING$(5, 18 * 18
) 

CLS$ = CHR$(28) 
PRINT CLS$ 

BASIC KEYWORDS 

Stores control code 28 in CLS$. PRINTing CLS$ homes the cursor 
to the upper left corner. 

Graphics Characters 

Since PRINT outputs in the scroll-mode, graphics characters 
cannot be output using a normal print list. Instead, tnere is a 
special function to provide graphics-mode output. See CRTG. 
(For a list of graphics characters, see the TRSDOS Reference 
Manual. ) 

Other PRINT-related functions 

TAB, CRTX, CRTY, CRTI. 

----------- llad1elllaeli----------
PAGE 6 - 134 



MODEL I/III COMPILER BASIC BASIC KEYWORDS @ _____________ _ 

PRINT to a disk file 
Print to Disk 

Sequential access: 

-- STATEMENT --

PRINT# file-unit; item-list 

Indexed sequential: 
PRINT# file-unit, KEY=key; item-list 

Direct access: 
PRINT# file-unit, KEY=record-number; item-list 

0 file-unit' is a numeric expression specifying 
the output file. The file-unit is assigned when 
the file is opened. 

'item-list' contains expressions to be evaluated 
and output to the disk file. Every item but the 
last must be followed by a comma. There 
should be no punctuation after the last item. 

'KEY=key' is used for output to indexed sequential 
access files. 'key' is a string expression 
containing the sort key. 

'KEY=record-number' is used for output to direct 
access files. 'record-number' is a numeric 
expression specifying the record number. 

This statement performs disk output in a manner analogous to the 
PRINT to video display. Of course, none of the special video 
display functions may be used. One PRINT statement writes one 
record. 

A comma •,u is inserted after each but the last item in the 
disk record. 

For output formats, see PRINT to Video Display. 

See "Data Files 18 for a discussion of file access under RSBASIC .. 

Examples 

PAGE 6 - 135 



MODEL I/III COMPILER BASIC BASIC KEYWORDS @ _____________ _ 

PRINT #1; A+B 

The value of A+B is output to file-unit #1. 

PRINT #2, KEY=NAME$; NAME$, PAYRAT, EXEMPT% 

NAME$, PAYRAT, and EXEMPT are output to the record indexed by 
the the contents of NAME$, in file-unit #2. 

PRINT #3, KEY=RECNBR%; NAME$, PAYRAT, EXEMPT% 

The same three items are output to record number RECNBR%, in 
file-unit #3. 

Sample Program 

See the chapter on data files. 

---------rtadae ® 

PAGE 6 - 136 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-- STATEMENT --

PRINT USING 
Print Using Format 

PRINT USING image, print-function, item-list 
'image' specifies the format of the data; it can 

be a line number referring to an image 
statement, or a string expression containing 
the image. 

'print-function' is one of the special functions: 
CRT, CRTR or CRTG. These functions position 
the cursor before printing starts. If omitted, 
printing starts at the current cursor position. 

'item-list' contains expressions to be evaluated 
and output to the video display. A TAB function 
may be one of the items. Every item but 
the last must be followed by a comma or semi-colon. 

This statement outputs to the display, beginning at the current 
cursor location. Unlike PRINT, it outputs formatted data, 
according to an image specification contained on a separate 
program line or in a string expression. 

When executed, PRINT USING attempts to output the first data 
item according to the first field in 'image', the second 
according to the second field, etc. If there are not enough 
image fields to satisfy the item-list, PRINT USING starts over 
at the beginning of 'image'. 

Image Lines for PRINT USING 

The image line indicates exactly how the data is to be printed: 
number of fields, length of each field, literal characters to 
insert between fields, and format for string or numeric fields. 
The following special characters are available for specifying 
the output format for string and numeric fields: 

® 

PAGE 6 - 137 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

Special 
Character 

# 

> 

< 

+ 

$ 

! ! ! ! 

Meaning 

A numeric or string character .. 
A sequence of N 18 #n characters 
represents a numeric or string 
field of N characters. 

When used as the first character 
in a string field, data will be 
right-justified with truncation on 
the left 

When used as the first character 
in a string field, data will be 
left ustified with truncation on 
the ght .. 

When used inside a nume c field, 
indicates the position of the decimal 
point .. 

When used inside a numeric field, 
specifies commas to be inserted at that 
position if a digit has been printed. 

When used ahead of a numeric field, a 
minus sign will be displayed ahead of 
negative numbers; blank space ahead of 
positive numbers. 

When used ahead of a numeric field, a 
plus sign will be displayed ahead of 
positive numbers; minus sign ahead of 
negative numbers. 

When used ahead of numeric fields, 
asterisks will be used as fill 
characters instead of the usual blankse 

When used ahead of numeric fields, 
the dollar sign will be displayed 
ahead of the number. 

When used following a numeric field, 
the number will be displayed with the 
same E notation that the Model I/III 
BASIC Interpreter uses. 

PAGE 6 - 138 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

Any other characters--or any of the above characters used out of 
context--will be treated as literals and inserted into the 
display output. Such characters also serve as image-field 
delimiters (they mark the beginning and end of the fields)o 

If stored in a separate program line, image lines take this 
form: 

line-number ;image 
line~number is a normal BASIC line number .. (Image lines 

can be used anywhere in your program .. ) 
';' marks the line as a non~executable.image line 
'image' is a sequence of characters a·efining the image 

format. · 

You can also store the image line inside a string, and then 
reference that variable in PRINT USING in place of the 
line-number .. 

Examples: 

100 IMAGE$= "MR .. ##########IS## AND MAKES$##### .. ##" 
110 PRINT USING IMAGE$, NAME$, AGE%, SAL 

Prints the values of the variables NAME$, AGE%, SAL using the 
image line stored in IMAGE$ .. 

100 ;MR .. ##########IS## AND MAKES$#####.## 
110 PRINT USING 100, NAME$, AGE%, SAL 

Produces the same output as the previous exampleo 

110 PRINT USING 100, CRT(X%,Y%), NAME$, AGE%, SAL 

Printing starts at row X%, column Y%. 

110 PRINT USING 100, NAME$, AGE%, SAL, 

The trailing comma suppresses the usual carriage return after 
the last character is displayed. 

How Data is Formatted into the Image 

e~------------
PAGE 6 - 139 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

------------TRS-BO@) ___________ _ 

String Data 

String data is left-justified into the image field, with filler 
blanks added on the right if necessary. If the string is too 
long to fit, the string is truncated on the right. 

(When'>' is used as the first character in the field, the 
string is right-justified with filler blanks added on the left 
if necessary. If the string is too long to fit, truncation is 
on the left. ) 

Numeric Data 

If the field contains a decimal point, the number is rounded to 
the precision specified in the image-field. The. rounded numbers 
is always right justified, with filler blanks added on the left 
if necessary. If the number contains too many numeric 
characters to the left of the decimal point, a string of 
asterisks will be output to fill the field (no digits will be 
displayed. 

Notes: Unless '+'or'-' is used ahead of the field, 
negative numbers will require one of the'#' positions 
for the sign. If '+' or '-' is used, the sign will not 
take one of the '#' positions. 

If '*' is used, any unused leading positions will be 
filled with asterisks instead of with the usual blanks. 

Sample Program 

10 REM *** PRINT USING*** 
20 DIM IMAGE$80, STRING$25 
30 PRINT "ENTER THE OUTPUT IMAGE FOR 3 FIELDS: string, 

real , integer 11 

40 LINE INPUT IMAGE$ 
50 PRINT "NOW ENTER THE DATA: string, real, integer" 
60 INPUT STRING$, RLN, NTGR% 
70 PRINT "HERE'S THE FORMATTED OUTPUT" 
80 PRINT USING IMAGE$, STRING$, RLN, NTGR% 
90 PRINT: GOTO 30 

---------- II 
® 

PAGE 6 - 140 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

Sample Run 

-~HU 
ENTER THE OUTPUT IMAGE FOR THREE FIELDS: strin9, real, inte9er 
? ########, #####, ###### 
NOW ENTER THE DATA: strin9, real-number, inte9er 
? LOTSALUCK, 34562, 1283 
HERE'S THE FORMATTED OUTPUT: 
LOTSALUCK 34562? 1283 

--------- rtadae 
PAGE 6 - 141 



MODEL I/III COMPILER BASIC 

STATEMENT -

PRINT USING to a disk file 
Print Using Format to Disk File 

Sequential access: 

PRINT USING# file-unit; image, item-list 

Indexed sequential: 

BASIC KEYWORDS 

PRINT USING# file-unit, KEY=key; image, item-list 

Direct access: 

PRINT USING# file-unit, KEY=record-number; image, 
item-list 

'file-unit' is a numeric expression specifying 
the output file. The file-unit is assigned when 
the file is opened. 

'image' specifies the format of the data; it can be a 
line number referring to an image statement, or a 
string expression containing the image specifiers. 

'item-list' contains expressions to be evaluated 
and output to the disk file. Every item but the 
last must be followed by a comma. There 
should be no punctuation after the last item. 

'KEY=key' is used for output to indexed sequential 
access files. 'key• is a string expression 
containing the sort key. 

'KEY=record-number' is used for output to direct 
access files. 'record-number' is a numeric 
expression specifying the record number. 

This statement performs disk output in a manner analogous to 
PRINT USING to video display. Of course, none of the special 
video display functions may be used. 

PRINT USING outputs formatted data, according to an image 
specification contained on a separate line or in a string 
expression. When executed, it outputs the first data item 
according to the first field in 'image', the second, according 

e~-----------
PAGE 6 - 142 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

to the second field, etc. If there are not enough image fields 
to satisfy the item-list, PRINT USING starts over at the 
beginning of 'image'. 

For further details on image specifiers, see PRINT USING to 
Video Display. See "Data Files 11 for a discussion of file access 
under RSBASIC. 

Examples 

PRINT USING #1; "###,### .. ##", A+B 

The value of A+B is output using the specified format to 
file-unit #1. 

PRINT USING #2, KEY=NAME$; FMT$, NAME$; PAYRAT; EXEMPT% 

NAME$, PAYRAT, and EXEMPT are output using the image in FMT$, to 
the record specified by the the contents of NAME$, to file-unit 
#2 .. 

100 ;<################### $## .. ## ## 
110 PRINT USING #3, KEY=RECNBR%; 100, NAME$; PAYRAT; EXEMPT% 

The same three items are output using the image of line 100, to 
record number RECNBR%, to file-unit #3o 

Sample Program 

See the chapter on data files. 

----------- lladae/llaell----------
PAGE 6 - 143 



MODEL I/III COMPILER BASIC 

-- STATEMENT -

RANDOMIZE 
Reseed Random Number Generator 

RANDOMIZE 

BASIC KEYWORDS 

RANDOMIZE reseeds the random number generator to a random place 
on the generator. If your program uses the RND function, the 
same sequence of pseudorandom numbers will be generated every 
time you Run the program. Therefore, you may want to put 
RANDOMIZE at the beginning of the program. This will help 
ensure that you get a different sequence of pseudorandom numbers 
each time you run the program. 

RANDOMIZE needs to be executed only once in the program0 

Example 

RANDOMIZE 

This statement helps ensure you will. get a different sequence of 
random numbers every time you RUN the program. 

Sample Program 

80 REM *** SAMPLE PROGRAM DEMONSTRATING RANDOMIZE*** 
90 HEM 

100 RANDOMIZE 
110 PRINT CHR$(28); CHR$(31) 
120 PRINT "PICK A NUMBER BETWEEN 1 AND 5" 
130 INPUT A 
140 8% - RND * 5 + 1 
150 IF A= 8 THEN 180 

---------rtad1elhaell---------
PAGE 6 - 144 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

160 PRINT "YOU LOSE, THE ANSWER IS"; B; " -- TRY AGAIN." 
170 GOTO 120 
180 PRINT "YOU PICKED THE RIGHT NUMBER -- YOU WIN!" : GOTO 120 

PI C~, A NUMBER BETWEEN 1 AND 5 
? '+ 
YOU LOSE, THE ANSWER IS 5 TRY AGAIN .. 
PIO, A NUMBER BETWEEN 1 AND 5 
? 1 
YOU LOSE, THE ANSWER IS 3 TRY AGAIN .. 
PICh A NUMBEl1 BETWEEN 1 AND 5 
? 3 
YOU PI C~-<ED THE RIGHT NUMBER YOU WIN! 

----------ltadaelhaeli----------
PAGE 6 - 145 



MODEL I/III COMPILER BASIC KEYWORDS @!) _____________ _ 

-- STATEMENT -

READ 
Get Value from DATA Statement 

READ variable, ••. 0 

READ assigns a value from a DATA statement ~o the "variable'. 
The first time READ is executed, READ assigns the first value in 
the first DATA statement to its first 8 Variable'o The second 
time, READ reads the second value in the first DATA statement 
and assigns it to its second variable* READ continues to assign 
data to its variables in sequential order moving to second 
DATA statement when all the data in the first DATA statement has 
been reado 

An Out of Data error occurs if there are more attempts to READ 
than there are DATA itemse 

Note: Also see DATAc 

Examples 

READ T 

Reads a numeric value from a DATA statemento 

READS$, T, U 

Reads values for S$, T, and U from a DATA statement 

Sample Program 

80 REM 
90 REM 

100 REM 
110 READ 
120 DATA 
1:.30 REM 

*** SAMPLE PROGRAM DEMONSTRATING READ*** 

*** READ IN DISCOUNT QUALIFICATIONS*** 
GH $, <~2$ 
"PRE-PAYMENT DISCOUNT", "QUANTITY DISCOUNT" 

*** READ IN DISCOUNTS*** 

---------- llat11elhaell----------
PAGE 6 - 146 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

140 READ Di., D2 
150 DATA .. 05, .. ((.17 
160 REM 
170 PRINT (~1 $; II II m D1*100; II'% U , 
180 PRINT (~2$; II 

_ .. ___ 
II" D2* 100; "%" , 

*RUN 
PRE-PAYMENT DISCOUNT --- 5 '% 
QUANTITY DISCOUNT 7 % 
STOP LINE 180 

-----------1tafl1elllaeli----------
PAGE 6 - 147 



MODEL I/III COMPILER BASIC 

-- STATEMENT -

READ from a disk file 
Read Contents of Disk File 

Sequential access files: 
READ# file-unit; variable-list 

Indexed-sequential access files: 
READ# file-unit, KEY=key; variable-list 

Direct access files: 

BASIC KEYWORDS 

READ# file-unit, KEY=record-number; variable-list 

'file-unit' is a numeric expression specifying 
the input file. The file-unit is assigned when 
the file is opened. 

'variable-list' specifies the target variables to 
receive the data input from the file. Every 
variable but the last must be followed by a 
comma. There should be no punctuation after 
the last variable. If no variables are supplied, 
the current record is skipped. 

'KEY=key• is used for input from indexed sequential 
access files. 'key' is a string expression 
containing the sort key. 

'KEY=record-number' is used for input from direct 
access files. 'record-number' is a numeric 
expression specifying the record number. 

This statement performs disk input of binary records written 
with the WRITE statement. 'variable-list' must match the 
'item-list• used when the record was written, in number and type 
of data items. String variables must be large enough to contain 
string data; integer data must be read into integer variables; 
etc .. 

See "Data Files" for a discussion of file access under RSBASIC. 

Examples 

® 

PAGE 6 - 148 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 
@ _____________ _ 

READ #1; A; B 

Values for A and Bare read from file-unit #1. 

READ #2, KEY=NAME$; PAYRAT, EXEMPT% 

PAYRAT and EXEMPT are read from the record indexed by the 
contents of NAME$, in file-unit #2. 

READ #3, KEY=RECNBR%; PAYRAT, EXEMPT% 

The same two items are read from record number RECNBR%, in 
file-unit #3 .. 

Sample Program 

See the chapter on data files., 

----------rtact1elhaell----------
PAGE 6 - 149 



MODEL I/III COMPILER BASIC BASIC KEYWORDS @ _____________ _ 

-- STATEMENT -

REAL 
Define Variables as Real Numbers 

REAL*8 letter-list 
*8 represents the eight byte length of real 

numbers. This may be omitted. 
'letter-list' is a sequence of individual 

letters or letter-ranges; the elements 
in the list must be separated by commas. 
A letter-range is in the form: 

'letterl-letter2'. 

REAL defines all variables, or all beginning with the letters 
specified in 'letter-list' as real. However, a type 
declaration character will override the REAL statement. Real 
numbers are stored in 8-bytes and have 14 digits of precision, 
although only 6 are printed. 

REAL with a letter list may be used after an INTEQER or STRING 
statement to override the integer or string defaults for certain 
specified variable names. For example: 

10 INTEGER 
20 REAL A-C 

causes all variables, except those beginning with the letters A 
through C, to be integers. Variables beginning with A, B, and C 
are real. 

Note: For more information, see the chapter on BASIC Concepts. 

Examples 

REAL I, W-Z 

Causes any variables beginning with the letters I or W through Z 
to be real variables. However, I% would still be an integer 
variable because of its type declaration tag. 

-----------1tad1elhaeli----------
PAGE 6 - 150 



MODEL I/III COMPILER BASIC 

Sample Program 

10 INTEGER 
20 REAL X 
:30 A :::: 1. 23 
40 X :::: 1 .. 2:5 
:)0 PFU NT II A EG~UAL.S 11 

; A 
60 PRINT 11 X EQUALS 11

; x 
*RUN 
A EG!UALS 1 
X EG~UALS 1. Z3 
STOP LINE 60 

--------- It 18 

BASIC KEYWORDS 

e~-----------
PAGE 6 - 151 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-- STATEMENT --

REM 
Comment Line (Remarks) 

REM 

REM instructs the Computer to ignore the rest of the program 
line. This allows you to insert remarks into your program for 
documentation. Then, when you or someone else looks at a 
listing of your program, it will be easier to figure out. 

The apostrophe (')may be substituted for REMe 

Examples 

REM This is a remark 
REM 
REM ********************** 

This is a remark 

All of these lines will be ignored when the program is executed. 

X=l 
X=X+l 

REM Initialize X 
REM Increment X 

Both statements on the right side of the colon will be ignored 
when the program is executed. 

Sample Program 

10 REM THIS IS A REMARK 
20 PRINT "SAMPLE PROGRAM" 
30 REM IT WILL DO NciTHING TO THE PROGRAM 

---------ltadle ® 

PAGE 6 - 152 



MODEL I/III COMPILER BASIC 

-- STATEMENT -

RESET BREAK 
Disable the <BREAK> Handling Routine 

RESET BREAK 

BASIC KEYWORDS 

RESET BREAK disables the <BREAK> handling routine you set up 
with ON BREAK GOTO. 

For example, you might use ON BREAK GOTO so that a person's 
pressing the <BREAK> key will be handled a certain way at the 
first of your program. However, in the second part of your 
program you might want BASIC to handle <BREAK> in the normal 
way. You may then use RESET BREAK to get BASIC to ignore the ON 
BREAK GOTO statement. 

Note: Also see ON BREAK GOTO 

Example 

RESET BREAK 

Causes BASIC to ignore the previous ON BREAK GOTO.statement and 
handle <BREAK> in the normal ways 

Sample Program 

See ON BREAK GOTO. 

® 

PAGE 6 - 153 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-- STATEMENT --

RESET ERROR 
Disable Error Handling 

RESET ERROR 

RESET ERROR disables an ON ERROR GOTO statement. Although ON 
ERROR GOTO is disabled every time it is used, RESET ERROR 
disables an ON ERROR GOTO statement that has not yet been used. 

Note: Also see ON ERROR GOTO, ERR, ERROR, and RESET GOSUB. 

Example 

If you are using ON ERROR GOTO to trap a possible error in one 
part of the program, but don't want any errors trapped in 
another part of the program: 

RESET ERROR 

Would cause the ON ERROR GOTO statement to be ignored. 

Sample Program 

80 REM *** SAMPLE PROGRAM DEMONSTRATING RESET ERROR*** 
90 REM 

100 ON ERROR GOTO 180 
110 PRINT "INPUT A NUMBER" 
120 INPUT A 
130 RESET ERROR 
140 PRINT "THE NEXT ERROR IN THIS PROGRAM" 
150 PRINT "WILL BE HANDLED IN THE NORMAL WAY" 
160 PRINT A/flJ 

PAGE 6 - 154 



MODEL I/III COMPILER BASIC 

170 STOP 
180 IF ERR<> 5 THEN ERROR ERR 
190 PRINT "YOU MAY ONLY INPUT A NUMBER" 
200 GOTO 100 

RUN 
INPUT A NUMBER 
? ER 
YOU MAY ONLY INPUT A NUMBER 
INPUT A NUMBER 
? L~3 
THE NEXT ERROR IN THIS PROGRAM 
WILL BE HANDLED IN THE NORMAL WAY 
DIVISION BY ZERO ERROR LINE 160 

1 .. E+63 
STOP LINE 170 

PAGE 6 - 155 

® 

BASIC KEYWORDS 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-------------TRs-eo@ ___________ _ 

-- STATEMENT --

RESET GOSUB 
Clear All Returns 

Whenever GOSUB is used, the Computer must store the return 
address. Normally, this return address is cleared when the 
RETURN statement is executed. 

However, if an error handling routine is executed, these return 
addresses might never be cleared. By using the RESET GOSUB 
statement in your error handling routine, BASIC will clear all 
of these return addresses. 

Note: Also see ON ERROR GOTO, GOSUB, and RETURN. 

Examples 

RESET GOSUB 

This statement clears all return addresses. 

Sample Program 

10 REM *** RESET GOSUB STATEMENT*** 
15 DIM S$1 
20 ON ERROR GOTO 1000 
30 PRINT "SELECT OPTION 1, 2, OR 3: "; 
40 8$ = INPUT$(2) 
50 0%:::: VAL'Y..(S$) 
60 ON 0% GOSUB 100, 200, 300 
70 GOTO 30 

100 PRINT "OPTION 1" 
110 RETURN 

------------ llad1e/haell----------
PAGE 6 - 156 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 
-------------TRS-BO@ ___________ _ 

:?i2l0 Pf~I NT 11 0PTION 211 
210 RETURN 
300 PFUNT "OPTION 311 ..... 

:310 F-<ETURN 
1000 RESET EiOSU8 
1010 GOTO 30 

~-RU 
SELECT OPTION 1 ' ·-::• ..... , OR 3: 1 
OPTION 1 
SELECT OPTION 1' 2, OR 3: 2 
OPTION :2 
SELECT OPTION 1 ' ·-::• ..... ' OR 3: :.3 
OPTION 3 

-----------lladlOlllaeli----------
PAGE 6 - 157 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-- STATEMENT --

RESTORE 
Reset Data Pointer 

RESTORE line number 

When the Computer is READing data, it will read the data from 
the DATA statements sequentially and quit reading when all the 
data has been read. This means that without RESTORE, you can 
only use each data item once. 

RESTORE causes the next READ statement to start over in reading 
the first item in the first DATA statement again. If you 
specify a line number it will start over reading the first data 
item on that particular DATA line. 

Examples 

RESTORE 300 

The next READ statement will begin reading the first data item 
on the DATA statement at line 300. 

RESTORE 

The next READ statement will begin reading the first data item 
on the first DATA statement line. 

Sample Program 

80 REM 
90 1:~EM 
9t::, REM 

l (110 REM 
105 REM 

*** SAMPLE PROGRAM DEMONSTRATING RESTORE*** 

*** READ IN PROMPTS*** 

110 D/.\TI~ 11 TRY ANOTHER ANSWER 11
,, 

11 ~{EEP TRY I NG 11
,, 

11 IT BEG I Nt> l,.JI TH AN A 11
,, 

11 LAST 11 

:l 2(2j READ PROMPT'$ 
130 IF PROMPT$= 11 LAST 11 THEN RESTORE: GOTO 120 

----------1tafl1elhaeli-----------

PAGE 6 - 158 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 
-------------TRs-ao@ ____________ _ 

140 
1 L~S 
1 ~HZI 
1 ~35 
160 
17i'.'.I 
1B0 
190 

·IE-RU 

l~EM 
REM 
REM 
REM 
PRINT 
INPUT 
IF A$ 
PFUNT 

*** BEGIN GEOGRAPHY EDUCATION PROGRAM*** 

"WHAT IS THE CAPITAL OF TEXAS" 
A$ 
<> 11 AUSTIN 11 THEN PRINT PROMPT$: GOTO 120 
11 VERY GOOD .. THAT'S THE ONLY QUESTION WE HAVE FOR NOW ... " 

WHAT IS THE CAPITAL OF TEXAS 
? AUSTIN 
VERY GOODu.THAT'S THE ONLY QUESTION WE HAVE FOR NOW ... 
STOP LINE 190 
-~·RU 
WHAT IS THE CAPITAL OF TEXAS 
? NE.WAR~~ 
TRY ANOTHER ANSWER 

PAGE 6 - 159 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-------------TRS-eo@ ___________ _ 

-- STATEMENT -

RESUME 
Terminate Error-Trapping Routine 

RESUME 
.. Exectiofi res.um~S· aJ:· 

caUs.Ln:g·theerror .. 
beginri1n.g6f.the statement 

causing the 
. error. 

RESUME terminates an error-handling routine by specifying where 
normal execution is to resume. Place a RESUME statement at the 
end of an error-trapping routine. That way later errors can 
also be trapped. 

RESUME causes the Computer to return to the statement in which 
the error occurred. RESUME NEXT causes the Computer to branch 
to the statement following the point at which the error 
occurred .. 

Example 

RESUME 

If an error occurs, when program execution reaches the line 
above, control will be transferred to the statement in which the 
error occurred. 

Sample Program 

80 REM *** SAMPLE PROGRAM DEMONSTRATING RESUME*** 
90 liEM 

100 ON ERROR GOTO 500 
110 READ A 
l20 PRINT Ais 
1]0 GOTO 110 
140 DATA l, 2, 3, 4, 5, 6 

----------1tad10/haell---------

PAGE 6 - 160 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 
-------------TRS-eo@ ___________ _ 

1 ~5(lt STOP 
500 IF ERR<> 7 THEN ERROR ERR 
'.:H0 PRINT "DO YOU WANT TO PfUNT THE LIST AGf'\IN 11 

~:,20 INPUT R$ 
530 IF RS= 11 N0 11 THEN STOP 
~)Lt-0 RESTORE 
550 ON ERROR GOTO 500 
=•t:>0 RESUME 

*RU 
l. 
5 

? YES 
1 
5 

AIN 
? NO 
fffOP LINE 530 

6 

6 

3 
DO 

:~ 
DO 

4. 
YOU WANT TO PRINT 

Lt, 

YOU WANT TO PRINT 

THE LIST AG 

THE LIST AG 

---------- llatllOlhaeli----------
PAGE 6 - 161 



MODEL I/III COMPILER BASIC 

-- STATEMENT -

RETURN 
Return Control to Calling Program 

RETURN 

BASIC KEYWORDS 

RETURN ends a subroutine by returning control to the statement 
immediately following the most-recent executed GOSUB. If 
RE'rURN is encountered without execu on of a matching GOSUB, an 
error will occur0 

Example 

RETURN 

This line ends the subroutine, returning execution back to the 
line immediately following the most recently executed GOSUB. 

Sample Program 

·¾·RU 

1,~1 REM 
:~:'.0 !~EM 

*** SAMPLE PROGRAM DEMONSTRATING RETURN*** 

:m PRINT "THIE~ PFWGFMM FINDt> THE AREA OF/.\ CIF~Cl..E 11 

'-1-(ZJ P 1:~ I NT II TY PE I 1\1 /; V l:-; LUE FOR THE HAD I us 11 

~.1C1 INPUT R 
6(2) GOSUB B0 
7(1 PR I NT 11 /.\F~EA It;; 11 

; A: ~3TOP 
80 A= 3.14 * R * R 
cn1 RETURN 

THIS PROEiF~r\M FINDt) THE AHEA OF/., CIRCLE 
TYPE IN A VALUE FOR THE RADIUS 
? 1.B 
Al:~Ef.>i I G 1 (;ij :l 7 D ~'.36 
EJTOP L. I NE 70 

----------rtad1elhaell---------

PAGE 6 - 162 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 
@ ______________ _ 

-- FUNcrrroN -

RND 
Generate Pseudorandom Number 

RND 
R.ND (number) 

'number' is a positive integer. 

RND produces a pseudorandom number between 0 and 1. Programmers 
commonly use it to introduce the element of chance in a program. 

This random number is generated by using the current "seedvo 
number. When you specify a 'number' with RND, RND reseeds the 
generator with that 'number'. To reseed the generator at 
random, use the RANDOMIZE statement. 

RND always returns a real number between 0 and 1. The examples 
below show how to produce random integers higher than 1. 

Examples 

PRINT RND 
Prints a random number between O and lo 

PRINT RND * 2 

Prints a random number between O and 2. 

PRINT INT(RND * 2) 

Prints either O or 1 at random. 

PRINT INT(RND * 2 + 1) 

Prints either 1 or 2 at random. 

PRINT INT(RND * 100 + 1) 

Prints a random whole number between 1 and 100. 

PAGE 6 - 163 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 
-------------TRs-ao@ ___________ _ 

A= RND 

A random number between 0 and 1 is assigned to A. 

Sample Programs 

80 REM *** SAMPLE PROGRAM DEMONSTRATING RND *** 
90 REM 
9~) f~ANDOM I Z E 

100 X = INTCRND(0) * 6) + 1 
110 Y = INT(RND(0) * 6) + 1 
12,1 PRINT: PRINT "YOUF~ ROLL IS"; X; "t\ND"; Y; "-·--·----"; X + y 

i':·f~UN 

YOUR ROLL IS 6 AND 5 ------ 11 
STOP LINE 12V) 

---------1tad1e/haeli---------
PAGE 6 - 164 



MODEL I/III COMPILER BASIC BASIC KEYWORDS @ _____________ _ 

-- FUNCTION --

SEG$ 
Get Substring 

SEG$(string, position, length) 
'string' is a string constant or a string variable. 
'position' is the position where the substring 

begins in the 'string'. 
'length' is the number of characters in the 

substring. If omitted, the length from 
position to the end of 'string' is used. 

SEG$ returns a substring of 'string'. The substring begins at 
'position' in the 'string' and is 'length' characters long. 

Examples 

If A$= "WEATHERFORD" then 

PRINT SEG$(A$, 3, 2) 

Prints 'AT'. 

F$ = SEG$(A$, 3) 

Puts 'ATHERFORD' into F$. 

Sample Program 

80 REM *** SAMPLE PROGRAM DEMONSTRATING SEGS *** 
90 1:<EM 

100 PRINT "AREA CODE AND NUMBER <NNN-NNN-NNNN)" 
11.0 INPUT PH$ 
120 EX$= SEGS<PHS,5,3) 
1.30 PRINT "NUMBER IS IN THE"; EX$; "EXCHANGE" 
14G1 GOTO 100 

----------- rtadae lhaell-----------
PAGE 6 - 165 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-- FUNCTION --

SGN 
Get Sign 

SGN(number) 
'number' is a numeric expression 

This function returns the sign of the 'number'. It returns a 1 
if the number is positive, 0 if it is a 0, and -1 if it is 
negative. 

Examples 

PRINT SGN(S) 

Prints L 

PRINT SGN(-5) 

Prints -1. 

PRINT SGN(0) 

Prints 0 .. 

Y = SGN(A * B) 

Determines the value of A* Band assigns the appropriate 
number (-1, 0, 1) to Y. 

PRINT SGN(N) 

Prints the appropriate number. 

Sample Program 

PAGE 6 - 166 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

80 REM *** SAMPLE PROGRAM DEMONSTRATING SGN *** 
90 l~EM 

100 PFHNT II ENTER A NUMBER" 
110 INPUT X 
120 ON SGN(X) + 2 GOTO 130~ 140, 150 
13vl PRINT "NEGATIVE" : STOP 
1L1.0 PRINT II ZERO" : STOP 
150 PRINT "POSITIVE" : STOP 

*HU 
ENTER A NUMBER 
? 3 
POSITIVE 
STOP LINE 15i?J 
1".·RU 
ENTER A NUMBEF~ 
? --8 
NEGATIVE 
BTOP LINE 1:m 

----------ltadlO/haell----------
PAGE 6 - 167 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-------------TRS-so@ ___________ _ 

-- FUNCTION --

SIN 
Compute Sine 

SIN(number) 
'number' is a numeric expression. 

SIN returns the sine of the 'number', which must be in radians. 
To obtain the sine of X when Xis in degrees, use SIN(X * 
.01745329251993). 

The result is always a real number. 

Examples 

W = SIN(MX) 

Assigns the value of SIN(MX) to W. 

PRINT SIN(7 .. 96) 

Prints the value .994385 .. 

E =(A* A)* (SIN(D)/2) 

Performs the indicated calculation and stores it in E. 

Note: Trigonometric functions are not loaded when you load the 
BASIC Compiler; they are loaded upon demand. This might cause a 
slight delay when using these functions, since they must be 
loaded into the system first. 

Sample Program 

----------ltadlO/haell----------
PAGE 6 - 168 



MODEL I/III COMPILER BASIC BA.SIC KEYWORDS 

------------- TRS-ao@ ___________ _ 

80 REM *** SAMPLE PROGRAM DEMONSTRATING SIN*** 
90 REM 

100 PRINT "INPUT AN ANGLE IN DEGREES" 
110 INPUT A 
120 PRINT "SINE IS"; SIN<A * .01745329) 
1 ~30 GOTO 100 

1E·RU 
INPUT AN ANGLE IN DEGREES 
? 3(2) 
fHNE IS 0u ~> 
INPUT AN ANGLE IN DEGREES 
? -··B 
SINE IS-0a139173 

---------ltatlaelhaell---------
PAGE 6 - 169 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

@) ---------------

-- FUNCTION --

SQR 
Compute Square Root 

SQR(number) 
•number' is a non-negative numeric expression. 

SQR returns the square root of the 'number'. The result is 
always a real number. 

If 'number is a negative value, SQR will print a warning and 
then return the square root of the absolute value of 'number'. 

Examples 

PRINT SQR(9) 

Prints 3. 

PRJ:NT SQR ( 6 + 3) 

Prints 3. 

PRINT SQR(l55.7) 

Prints 12.478. 

Y = SQR(A * B) 

Assigns the value of the square root of A* B to Y. 

Sample Program 

® 

PAGE 6 - 170 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

80 REM *** SAMPLE PROGRAM DEMONSTRATING SQR *** 
90 l~EM 

100 PRINT 11 NUMBER 11
, 

11 SG1UARE rwoT 11
, 

11 NUMBER 11
, 

11 ~Vi!Ul\HE ROOT 11 

110 FOR X = 1 TO 44 STEP 2 
l 2 !tj PR I NT X , S G1 R ( X ) , X + 1 , S G! R ( X + l ) 
130 NEXT X 
1 L1-tzl GOTO 1 L~e.1 

·*F~U 
1····-IUMBER 

1 
3 

7 
9 
l 1 
13 
1 ::• 
17 
19 
21 

27 
29 
31 
33 

37 
39 
'+ 1 
43 

EiQUARE ROOT 
l 
l .. 7320~j 
2 .. Z3607 

:L 31662 
3 .. 60'.:J55 
3.,87298 
J.1- .. 1 ::;::3:t :I. 
1-i-. 3~.:,89 
'-1- .. Sf:32:5B 
L~., 79~:)83 
5 
:=) n l 961 :::, 
S .. 38~5 l 6 
'.:L 5t:.rT76 
5 .. 7'+456 
5 .. 91608 
6 .. 08276 
6., 211.s 
6 .. 4031:2 
6., :55 7 L~L1, 

NUMBER 

Li• 
6 
8 
10 
12 
:L l.1-

l 6 
:1.8 
2e.1 

PAGE 6 - 171 

® 

SG1UARE ROOT 

3u lf.:>228 
:3u /.j,t.:,J'.j. 1 
3 .. 71.1-166 

L1-., 2L1-2f.:>l+ 

L~ ., 11. 7 2 1 L1, 

L~., 690L1-:2 
Li-. 89B98 
s" (7.l99vJ:2 
:) • 291 :) 
'.5 .. .t.1-7723 
~::, .. 65 68~j 
5 .. B:309~5 

6u 164Ll·1 
6 u 3211,:) 6 
6 .. .t.1-8((.)7.t.~ 
6 " t:, 3 :~ :~: ::, 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-------------TRs-so@ ____________ _ 

-- STATEMENT --

STOP 
Stop Program Execution 

STOP 

STOP terminates execution of your program at the line number you 
specify. Normally, STOP is used to terminate execution at a 
line other than the end of the program. 

Unlike END, the compiler will compile the entire program 
including the lines following the STOP statement. However, when 
the program is executed, no lines after STOP will be executed. 

Note: STOP is used in the same manner END is used with the 
BASIC Interpreter. 

Example 

STOP 

This line is the last line executed. No lines following it are 
executed. 

Sample Program 

B(ZI r~EM ~ .. ~··!£:· t3AMPL..E PROGRAM DEMON~rTRAT I NG STOP 11HHf 

90 1:~EM 
100 PRINT "DO YOU WANT TO CONTINUE" 
110 INPUT l\$ 
120 IF A$= "YES" THEN 140 
1 :3 0 !:3T OP 
l L1.(1 PR I NT II THE REST OF THE PROGRAM II 

---------rlafl10/haell---------

PAGE 6 - 172 



MODEL I/III COMPILER BASIC 

-- FUNCTION -

STR$ 
Convert to String Representation 

STR$(number, image) 
'number' is a numeric expression. 

BASIC KEYWORDS 

'image' specifies the format of 'number'. It 
can be a line number referring to an image 
statement, string variable containing the 
image, or a string constant. If omitted, 
'number' is printed as a real number with 
6 digits of precisione 

STR$, the inverse of VAL, converts the 'number' to a string. 
For example, if X = 58.5, then STR$(X) equals the string 
"58.5"., Notice that a leading blank is inserted before 58.5 to 
allow for its sign. 

While numeric operations (such as addition, subtraction, 
multiplication, and division) may be performed on X, only string 
functions and operations may be performed on the string" 58.5uu. 

You may use an image with STR$ to specify the format in which 
you want the number printed. See PRINT USING for information on 
how to construct an image. If you don't use an image, the 
number will be printed in the real number format. See PRINT for 
an explanation on how real numbers are printed. 

Examples 

A$= STR$(100) & "DOLLARS" 

Assigns "100 DOLLARS" to A$. 

PRINT "NUMBER" & STR$(6+3) 

Prints NUMBER 9. 

S$ = STR$(X) 

PAGE 6 - 173 

® 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

------------- TRS-so@ ___________ _ 

Converts the number X into a string and stores it in S$. 

PRINT STR$(10000000) 

Prints l.E+7. (See PRINT for an explantion of the E notation.) 

A$= STR$(35592163) 

Assigns "35592163" to A$. 

PRINT STR$(600000000, "########") 

Prints "600000000". 

PRINT STR$(60000000) 

Prints 6.E+8. 

PRINT STR$(35.24, A$) 

Prints "35.24" in the format contained in A$. 

Sample Programs 

~. 
6 

Ul.) 
15 
:?C:1 
:~:'.~) 
30 
Li,0 
~:HlJ 

·*HU 

REM 
HEM 
PRINT 
INPUT 
PRINT 
INPUT 
PRICE 
CODE~; 
Pl=< I NT 

*** SAMPLE PROGRAM DEMONSTRATING STRS *** 
"INPUT ITEM NUMBER" 
ITEM 
"INPUT COST OF ITEM" 
COST 

=-~= COST ~· 2. 5 
=~ "I" 8.~ STR$(ITEM) 8.( "C 11 8.( STR$(COST) & "P" & STR$(PRICE) 
11 ITEM IS NOW CODED AS 11

; CODE$: STOP 

INPUT ITEM NUl..,.IBE f~ 
? '+ 
INPUT COST OF ITEM 
? 4 .. 95 
ITEM IS NOW CODED AS I4C4.95P12.375 
STOP LIN[~ ~50 

----------1tad1elhaeli----------

PAGE 6 - 174 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 
-------------TRs-ao@ ___________ _ 

*RU 

H1 PHINT "TYPE A NUMBER WITH 1L1. DIGITS OR LESS" 
20 INPUT A 
30 PRINT "THE NUMBER WITHOUT THE FORMAT IS PRINTED : 11

; STRS(A) 
40 PRINT "THE NUMBER WITH THE FORMAT'#######"#######' IS : 11

; 

50 PRINT STRS(A,"#######a#######") 

TYPE A NUMBER WITH 14 DIGITS OR LESS 
? 789 .. 766~1 1+2 
THE NUMBER WITHOUT THE FORMAT IS PRINTED :789.767 
THE NUMBER WITH THE FORMAT'####### .. #######' IS :789 .. 7665420 
STOP LINE ::,0 

----------- llad1e lhaeli-----------
PAGE 6 - 175 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-- STNrEMENT --

STRING 
Define Variables as Strings 

STRING*length letter-list 
*'length' is the number of characters which will be 

allotted for each string variable& 
If omitted, all string variables will 
be stored as 255 characters (255 bytes). 

'letter list is a sequence of individual letters 
or letter-ranges; thee the list must 
be separated by commas .. A letter-range is in the 
form 

letterl - letter2 

STRING causes all variables in the program to be classified as 
string unless a type declaration tag is used. All string 
variables will be stored as if they have 255 characters unless 
you specify a length. 

If you use 'letter-list', only variable names beginning with 
those letters will be classified as string. 

Note: For more information, see the chapter on BASIC Concepts. 

Example 

srrRING C, L-Z 

Causes any variables beginning with the letters C or L through Z 
to be string variables, uniess a type declaration is added. 
Each of these variables will be stored as a 255-character 
string. 

STRING 

Causes all variables to be 255-character string variables, 
unless a type declaration tag is used. 

STRING*S 

---------1tad1e ae~-----------
PAGE 6 - 176 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

Causes all variables to be 5-character string variables, unless 
a type declaration tag is used. 

STRING*l A-F 

Causes all variables beginning with the letters A through F to 
be 1-character string variables unless a type declaration tag is 
used. 

Sample Programs 

·ltHU 

1 (Zt HEM ·1H,H•:· ST!'.~ I NG ST t\ TEMEI\IT ·t,HH:· 

2k'.I f;T F~ I NG·~•6i1. l... 
](Zt STH I I\IG•i{· 1 C 
it-fl PR I NT II TYPE IN A MES~:)1<\GE ii 

'.5(1.j INPUT L 
617'1 PRINT 11 TYPE IN A E;INGI....E CHAF~t.CTER 11

; 

7(Z1 C ::::: I I\IPUT~f; ( :I. ) 
BC1 PH 1 ~\IT II THE MEf:~flt':-..GE lA,l/:'1F; ~ II ; L.. 
9C1 PRINT II THE Cl·--1/.~FU\CTEH ~,ll\S: 11

; C 

TYPE IN A MESSAGE 
? THIS IS l\ TEST 
TYPE IN A SINGLE CHARACTERS 
THE MESSAGE WAS: THIS IS A TEST 
TH~ CHARACTER WAS: S 
STOP LINE 9(2'.t 

--------- rtad1e/haeli---------

PAGE 6 - 177 



MODEL I/III COMPILER BASIC BASIC KEYWORDS @ _____________ _ 

-- FUNCTION -

STRING$ 
Return String of Characters 

STRING$(length, character) 
'length' is numeric expression in the range of 

0 to 255a 
'character' is a string constant or a string 

variable. 

STRING$ is useful for creating graphs or tables, where you.want 
to print a large string of the same characters. It returns a 
string of the character you specify. How many characters are in 
the string depends on the length you specify. 

Examples 

PRIWr STRING$(10, "- 11
) 

Prints----------. 

B$ = STRING$(25, 11 X") 

A string of 25 X's - XXXXXXXXXXXXXXXXXXXXXXXXX - is stored as 
B$" 

Sample Program 

80 REM *** SAMPLE PRGRAM DEMONSTRATING STRING$*** 
9(ZI r<EM 

100 PRINT CHR$(28); CHR$(31) : X = 0 
11 l]j PR I NT CRT ( G'.J ~ :;;:(;1) :: 11 Bl:-,1....E!:3 OF E/.\CH ITEM 11 

120 FOR I= 1 TO 6 
130 READ A: X = X + 2 
1.Li-0 PR 1 NT CRT< x., 0) ; 11 ITEM 11 

; 1 ; 11 11 
; ~rr n 1 NG~~ u~ '.I 

II x 11 > 
150 NEXT I 
160 GOTO l 6~1 
170 DATA 15,44,50~28,22,8 

® 

PAGE 6 - 178 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 
@ ______________ _ 

-- STATEMENT -

SUB 
Name and Define Subprogram 

SUB "subname"; dummy variable list 
'subname' is a 1 to 6 character string constant 
'dummy variable list' consists of any kind of 

variables separated by commas. 

SUB must always be the first statement in a subprogramo It 
names the subprogram and lists its dummy variables. These dummy 
variables are given the values of whatever variables or 
constants are passed from the main program in the CALL 
statement. 

For instance, if the SUB statement lists the dummy variable X 
(SUB "SUB"; X), and the CALL statement sends it the value Y 
(CALL "SUB"; Y), X will be given the value Y. 

The type of dummy variables in the SUB statement must match the 
type of variables in the corresponding CALL statement. 

Examples 

SUB IV DEPREC" ; A, B 

This is the first line of the subprogram named "DEPREC". The 
dummy variables are A and B. They will be contain the value of 
whatever variables, expressions, or constants are sent to them 
by the CALL statement in the main program. 

suB "irABLE"; A$, B$, c, D, E( , ) 

Initiates and defines the subprogram named "TABLE". The dummy 
variables are A$, B$, C, D, E( , ) • 

SUB "GRAPH"; HORZ, VERr 

Initiates and defines the subprog.ram named "GRAPH" .. The dummy 
variables are HORZ and VERT. 

---------1tad1elhaeli---------

PAGE 6 - 179 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-------------TRS-BO ®------------

Note: For more information on subprograms see the Section·on 
Segmenting Programs. Also see CALL, END, and SUBEND. 

Sample Program 

80 REM *** SAMPLE PROGRAM DEMONSTRATING SUB*** 
90 11EM 

100 AS= "817/927-5856" 
110 8$ = "612/633-5811" 
120 PRINT "TELEPHONE NUMBERS:" 
130 PRINT A$: PRINT 8$ 
140 CALL "AREA"; AS 
1 ~)0 CALL II AREA 11 

; B$ 
160 Pf~I NT II THE AREA CODES ARE 11 

; AS; 11 AND 11
; 8$ 

:L70 END 
180 SUB 11 AREA 11

; TS 
190 TS= SEGS(TS,1,3) 
200 SUBEND 

*fW 
TELEPHONE NUMBERS 
817 /927-··5856 
612/633-.. 5811 
THE AREA CODES ARE 817 AND 612 
STOP LINE 170 

----------lladlOlllaeli----------

PAGE 6 - 180 



MOD.EL I/III COMPILER BASIC BASIC KEYWORDS 
@ _____________ _ 

-- STA'rEMENT --

SUBEND 
End Subprogram 

SUBEND 

SUBEND is the last statement in the subprogram. It returns 
execution back to the statement in the main program immediately 
following the statement which CALLed the subprogram. 

Example 

SUBEND 

Returns control back to the main program. 

Note: For more information on subprograms, see the section on 
Subprograms. Also see CALL, END, and SUB. 

Sample Program 

80 REM *** SAMPLE PROGRAM DEMONSTRATING SUBEND *** 
9vj 1:~EM 

1 k%'.'.l X :::: RND ( 0 ) 
1 l 0 Y :::: HND ( (J) 

1:?0 PRINT 11 BEFOF~E EXECUTING THE t,UBROUTINE 11 

1 3 G1 p R I NT II X ::::: 11 
' X ; II l~l'-1 D y :::: II !; y 

j_ 1,.0 Ct--.L..L.. II RtiND II ; X 
1 '.:j(t) C.i~iLL II RAND 11 

, Y 
16(-1 PF<INT II f.1FTER EXECUTING THE BUBROUTINE 11 

:t 7fll p RI NT Ii X :::: 11 
; X ; II AND y ::: II ; y 

1B(1 PHINT 11 TF~Y IT f.1Gr-\IN 11
; 

190 INPUT R$ 
?00 IF R$ :::: 11 YES 11 THEN l 00 

----------1tad1e/haell----------

PAGE 6 - 181 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 
------------TRs-so@ ___________ _ 

21~1 END 
~>::?0 t:)UB II R/:1ND II ; I\ 
230 A= CVI(A * 100) 
:?L1.Q) SUBEND 

-- STATEMENT -

SWAP 
Exchange Values of Variables 

SWAP variablel, variable2 

The SWAP statement allows the values of two variables to be 
exchanged. Either or both of the variables may be elements of 
arrays. Both variables must be the same type or a Type Mismatch 
error will result. 

Example 

SWAP Fl, F2 

The contents of F2 are put into Fl, and the contents of Fl are 
put into F2. 

Sample Program 

l C1 REM ·r.:··~:··*· BAMPL..E PROGRt\M DEMOl\lbTnt=iT I NG ~3h1AP ·*··~·~· 
--::ivi REM 
J(;~ F<FM -~:··*··l!:· BUBBLE r;ORT UBI NG ShlAP ~-~:··~=· 
l.~(2j !'.~EM 
50 INTEGER A-z: DIM A(50) 
6 (t.l l'-i ( IZ1 ) ~=:: G'.J 
7i;.1 PR I NT II HEPE AF;[ ::)({) NUMBEF<f.> BFTlrJEEN j_ /.=1ND l C)C'.j II 

80 FOR I= 1 TO 50: A(I) = CVI(RND(0)*100+1)~ PRINT ACI); : NEXT 
C) VI PF{ J I\I T ~ PF< J NT : PR J NT II NO i,.J E; () RT J NG D f'I TA a fl T f:\ RT T J M [ :::: 11 

; T f\ P, ( fl•(~ ) ; T J ME~~ 
100 F = 0: K = 0 : REM Fis set when a swap is made, K is counteP 
l09 F<EM *** swap and set F *** 

---------llad1e/haell---------

PAGE 6 - 182 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-----------TRs-ao@ __________ _ 

110 IF ACK) > A(K+1) THEN SWAP A(K), A(K+t): F = 1 
120 K = K + 1: IF K < 50 THEN 110 
129 REM *** 9o throu9h data a9ain until F = 0 *** 
130 IF F = 1 THEN 100 
140 PRINT "DATA SORTED. END TIME="; TABC40); TIME$ 
:l.:i0 PHINT: p1:~INT 11 HEHE IT I~:3 IN ORDEH: 11 

:i.60 FOR I :::: l TO :)t1: PF~INT f.\( I), : NEXT I 
*PU 
HERE ARE 50 NUMBERS BETWEEN 1 AND 100 

3 30 33 20 94 97 33 34 36 40 69 16 .1.,.9 1.,.2 68 :~~3 
t',v, 3~~) n~ 9~:) :?r1 BL,. 1 B 1 7 Lt2 7::, m~ 
6 92 15 41 39 18 80 83 35 98 :I. u.1C1 

7(ZI 
39 

6 7::, 9~::, 89 3 
:32 72 92 B:2 

NOW SORTING DATA. START TIME -
DATA SORTED. END TIME -

(t.j l : L1.2: 2::, 
(7.J 1 : .t.~2: :3'.j 

HERE IT H:; 
oi. 
~.• 6 1 :) 

'.:} ~36 36 
.... , 7::, 7~::, .,~· 

B :l.(ij0 BTOP 

IN OFWER: 
16 l '"1 18 { 

39 39 ~'.t-C1 
fl(t.j 80 B2 

LINE 16(tj 

18 20 20 30 32 
41 42 42 49 52 
83 84 89 92 92 

33 ;:,sL1, 3~::, 3 
69 70 70 7 
9::, 9:) 97 9 

--------- llad1elhaell---------

PAGE 6 - 183 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 
@ ____________ _ 

-- STATEMEN1r --

SYSTEM 
Return to TRSDOS 

SYSTEM 

SYSTEM will stop RSBASIC and return you to TRSDOS READY. The 
resident BASIC program will be lost. 

Example 

100 SYSTEM 

---------rtad1e/haell---------

PAGE 6 - 184 



MODEL I/III COMPILER BASIC BA.SIC KEYWORDS 
-------------TRS-BO@) ___________ _ 

-- FUNCTION --

TAB 
Tab to Position 

TAB(number) 
'number' is a numeric expression. If its value 
exceeds 255, it is interpreted in modulo 256. A value 
of 1 represents the first column on the display. You 
cannot TAB backwards (the TAB will be ignored). 

TAB used in a PRINT or LPRINT statement moves the cursor to the 
column position specified .. TAB may only be used in a PRINT or 
LPRINT statement. 

Note: See CRT for an illustration of the 64 column positions on 
the video display. 

Examples 

PRINT TAB(S);"TABBEDS"; 

This prints: 

TABBED 5 

Sample Program 

80 REM *** SAMPLE PROGRAM DEMONSTRATING TAB*** 
90 F~EM 

100 PRINT CHR$(28); CHRS(31) 
1 :1.0 PRINT TAB ( 2); 11 Cl.\TALOG NO .. "; TAB ( 16); 11 DESCRIPTION OF .... ITEM"; 
120 PRINT TA8(39); "QUANTITY"; TA8(51); "PRICE PER ITEM" 

CATr'\LOG NO .. DESCRIPTION OF ITEM G!UANTITY PRICE PER ITEM 

BTOP LII\IE 120 

---------1tad1elhaell---------

PAGE 6 - 185 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-------------TRs-ao@ ___________ _ 

-- FUNCTION --

TAN 
Compute Tangent 

TAN(number) 
'number' is a numeric expression. 

TAN returns the tangent of the 'number'. The number must be in 
radians. To obtain the tangent of ·X when Xis in degrees, use 
TAN(X * .01745329251994). The result is always a real number. 

Examples 

L = TAN(M) 

Assigns the value of TAN(M) to L. 

PRINT TAN(7.96) 

Prints the value -9.39696. 

Z = (TAN(L2 - Ll))/2 

Performs the indicated calculation and stores the result in z. 

Note: Trigonometric functions are not loaded when you load the 
BASIC Compiler; they are loaded upon demand. This might cause a 
slight delay when using these functions, since they must be 
loaded into the system first. 

Sample Program 

----------rtadlO ® 

PAGE 6 - 186 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

8(2) 
90 

100 
110 
120 
1~:m 

REM *** SAMPLE PROGRAM DEMONSTRATING TAN*** 
REM 
PFUNT II INPUT ANGLE IN DEGREE!:>" 
INPUT ANGLE 
T = TANCANGLE * "01745329) 
PHINT "TANGENT IS 11

; T 
1 L1.(2) GOTO 1 (2)(2) 

·*RU 
INPUT ANGLE IN DEGREES 
? :m 
TANGENT IS 0s57735 
INPUT ANGLE IN DEGREES 

TANGENT IS 1 .. 

PAGE 6 - 187 

® 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

--------------TRS-ao@ ____________ _ 

-- FUNCTION --

TIME$ 
Get the Time 

TIME$ 

This function lets you use the time in a program. 

The operator sets the time initially when TRSDOS is started up. 
When you request the time (with PRINT TIME$), BASIC will supply 
it using this format: 

14:47:18 

which means 14 hours, 47 minutes, and 18 seconds (24-hour clock} 
or 2:47:18 PM. 

To change the time, use the TRSDOS command, TIME. For example: 

TIME 13:30:00 (You can only do this under TRSDOS.) 

sets the time to 13 hours and 30 minute£ (and 0 seconds} or 1:30 
PM. 

Even if the operator never sets the time, TRSDOS will record the 
time at 00.00.00 when the system is started up and keep a record 
of how much time has passed. 

Examples 

PRINT TIME$ 

Prints the time .. 

A$= TIME$ 

When this line is reached in your program, the current time is 
stored as A$. 

----------1tad1elhaell----------
PAGE 6 - 188 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

Sample Program 

80 REM *** SAMPLE PROGRAM DEMONSTRATING TIME$*** 
90 1:~EM 

1 (2)0 I$ :::: TI ME~'> : IF f:H::.G~i) ( T%; '> 1 ~ :~.) ~~:: 11 1 ~j: 1 ::, 11 THEN 120 
11 tzl GOTO 1 G1(2l 
120 PRINT 11 TJME IS 10:15 A.Mu -- TIME TO PICK UP THE MAIL 11 

PAGE 6 - 189 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

-----------TRS-so@ __________ _ 

-- FUNCTION --

VAL 
Evaluate String 

VAL(string) 
'string' is a string constant or a string variable. 

VAL is the inverse of STR$. It converts the characters in the 
'string' to their numeric value. VAL returns a real number. 

VAL% returns an integer. 

VAL quits looking for numeric characters as soon as it hits a 
character that has no meaning. For instance VAL(l0ZS) returns a 
10 -- it stopped its search when it encountered the Zand 
returned 10 11 the current numeric value .. 

If the string contains no numbers or is null (has a length of 
zero), VAL returns a 0. 

Examples 

PRINT VAL("l00 DOLLARS") 

Prints 100 .. 

PRINT VAL("l00 DOLLARS AND 50 CENTS") 

Prints 100. 

PRINT VAL("l234E8") 

Prints 1234E+8 (1234 * 10 ** 8) 

PRINT VAL ("ONE") 

Prints 0 .. 

X = VAL ( "12 . 5 8 " ) 

Assigns the number, 12.58 to X. 

---------1tad1elhaell---------

PAGE 6 - 190 



MODEL I/III COMPILER BASIC 

A= VAL(B$) 

Assigns the numeric value of B$ to A. 

PRINT VAL%("12 .. 58") 

Prints 12 

Sample Program 

BASIC KEYWORDS 

80 REM *** SAMPLE PROGRAM DEMONSTRATING VAL*** 
90 REM 

100 REM *** WHAT SIDE OF THE STREET?*** 
110 REM *** NORTH IS EVEN, SOUTH IS ODD*** 
1.20 REM 
12:) PRINT "ENTER THE ADDRESS (NUMP.ER AND STREET) 11 

130 LINE INPUT AD$ 
1.40 C = CVI<VAL(ADS)/2) * 2 
150 PRINT c~ VAL(AD$) 
l.60 IF C = VAL(AD$) THEN PRINT "NORTH SIDE 11 GOTO 125 
170 Pl~INT "SOUTH t3IDE" : GOTO 130 

·lri-RU 
ENTER THE ADDRESS (NUMBER AND STREET) 
? :5608 J'ANE ANNE 
5608 5608 

NORTH SIDE 
ENTER THE ADDRESS (NUMBER AND STREET) 

3214 3215 
SOUTH ~3IDE 

PAGE 6 - 191 



MODEL I/III COMPILER BASIC 

WRITE to a disk file 
Write to Disk 

-- STATEMENT --

Sequential access files: 
WRITE# file-unit; item-list 

Indexed-sequential access files: 
WRITE# file-unit, KEY=key; item-list 

Direct access files: 

BASIC KEYWORDS 

WRITE# file-unit, KEY=record-number; item-list 

'file-unit' is a numeric expression specifying 
the output file .. The file-unit is assigned when 
the file is opened. 

'item~list' contains expressions to be evaluated 
and output to the disk file. Every item but 
the last must be followed by a comma .. 
There should be no punctuation after the last 
item0 If item list is empty, the record is 
written as a deleted record .. 

'KEY=key' is used for output to indexed sequential 
access files,. 'key• is a string expression 
containing the sort key. 

'KEY=iecord-number' is used for output to direct 
access files.. 'record-number' is a numeric 
expression specifying the record number0 

This statement performs disk output of binary records for 
subsequent input by an analogous READ statement. 1 item-list' 
must match the 'item-list' to be used when the record is read, 
in number and type of data items .. 

See "Data Files" for a discussion of file access under RSBASIC. 

Examples 

WRITE #1; A+B 

PAGE 6 - 192 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

The value of A+B is written to file-unit #1. 

WRITE #2, KEY=NAME$; PAYRAT, EXEMPT% 

PAYRAT and EXEMPT are written to the record indexed by the 
contents of NAME$, in file-unit #2. 

WRITE #3, KEY=RECNBR%; PAYRAT, EXEMPT% 

The same two items are written to record number RECNBR%, in 
file-unit #3. 

Sample Program 

See the chapter on data files. 

---------- rtad1elllaell----------

PAGE 6 - 193 



MODEL I/III COMPILER BASIC BASIC KEYWORDS 

@) ---------------

-- FUNCTION ·--

XOR 
Calculate Exclusive OR 

XOR{number, number) 
'number' is any integer in the range of -32768 to 

32767 .. 

XOR is a logical operation performed on the binary 
representations of the two 11 numbers' .. XOR compares the bits of 
the two numbers to see if they are identical or different. A 
binary O is returned if the two bits are identical; a 1 is 
returned if they are different: · 

First 
Number 

1 
1 
0 
0 

Second 
Number 

1 
0 
1 
0 

Bit 
Returned 

0 
1 
1 
0 

The binary number returned is represented as an integer. 

If 'number' is a real number, BASIC will convert it to an 
integer .. 

Examples 

PRINT XOR(72,32) 

Prints the result, 104. The operation is performed on the 
binary representation of the two numbers: 

Integer 

72 
32 

104 

----------rtadlO 

Binary 
Representation 

01001000 
00100000 

01101000 

PAGE 6 - 194 



MODEL I/III COMPILER BASIC 

PRINT XOR(l04,32) 

Prints 72: 

Integer 

104 
32 

72 

Binary 
Representation 

01101000 
00100000 

01001000 

IF XOR(255,A) >= 128 THEN PRINT 01 SE1r BIT 8" 

BASIC KEYWORDS 

Performs the XOR operation on 255 and the value of A. If the 
condition is true, the statement is printed. 

Note: Also see OR and AND. 

Sample Program 

80 REM *** SAMPLE PROGRAM DEMONSTRATING XOR*** 
90 rn:::M 

10,~j PRINT II INPUT A L.Ot,.JER or~ UPPER CASE LETTER" 
11 (Z) INPUT l'>iii> 
120 8$ = CHR$CXORCASC(A$),32)) 
l 3GJ Pl:{ I NT B~t-; 
1..-H~1 GOTO l m1 

·*·l:~u 
INPUT A LOWER OR UPPER CASE LETTER 
? r~ 
r· 
INPUT A LOWER OR UPPER CASE LETTER 
? I-{ 

k 

----------1tad10 lhaell----------

PAGE 6 - 195 





ection 3 

IT 

Using E IT to reate and 
Edit BASIC Source Files 

CAT. NO. 

26-2204 

TM 

CUSTOM MANUFACTURED IN USA BY RADIO SHACK1 A DIVISION OF TANDY CORP. 





TRS-80 MODEL I/III BASIC BEDIT 

TABLE OF CONTENTS 
SECTION 3 .. BEDIT -- SOURCE PROGRAM EDITOR 

INTRODUCTION . .. . .. . .. . .7 - 2 
SOURCE FILE FORMAT " . . " .. . . .. .. 7 - 2 
·ro START THE EDITOR . . " .7 - 3 
MODES OF OPERATION .. . . . .7 - 4 
USING THE COMMAND MODE .. 7 - 5 
SPECIAL KEYS IN THE COMMAND MODE . . . .7 - 6 
COMMANDS . 0 .. .. . .. . 0 " .. . " " . . .7 - 8 

B (PRINT BOT·roM LINE) .7 - 8 
C (CHANGE) .. . .. .. e . .7 - 8 
D (DELETE) " . " . . . .7 - 9 
E (EDIT) .. " .. . .. . 0 . . .7 - 9 
F (FIND) . . .. . 0 . . .. " . 0 7 - 11 
H (HARD COPY) 

., 
7 - 11 " 0 . . .. " .. 0 0 0 

I (INSERT) . 0 . . .. .. . . 7 - 12 
L (LOAD FROM DISK) . .. .. .. . 0 7 - 13 
M (MEMORY USED/FREE) . . .. 7 - 13 
N (RENUMBER)* . . 0 . " . 7 - 14 
p (PRINT TO DISPLAY) .. . . . . 7 - 14 
Q (QUIT SESSION) . " . . . . . 7 - 15 
R (REPLACE) 0 . . . .. . . 7 - 15 
T (PRINT TOP LINE) . . . . . 0 7 - 16 
w (WRITE TO DISK) 7 - 16 
X (CHANGE WITH PROMPTS) 0 . . 7 - 16 

Note: Do not use the renumber command inside your program text, 
unless you are not concerned with line references (GOTO, 
IF ... THEN ... , GOSUB, etc.). To renumber your program properly, 
use the compiler BASIC RENUMBER command. 

-----------1tat11elhaeli -----------
PAGE 7 - 1 

.. 



TRS-80 MODEL I/III BASIC BEDIT 
------------TRs-ao@ ___________ _ 

I N'rRODUCT ION 

BEDIT lets you create and edit BASIC source files (the files 
that are input to the BASIC Compiler). 

Capabilities and features: 

. Allows you to load in ("chain") multiple source files 

. Single-key abbreviations for many commands 

. Powerful intra-line editing mode like the edit mode in 
Model I/III Interpreter BASIC 

. "M" command informs you of memory used/free at any time 

. Global string find/change commands 

. Editor provides line numbers in the range 0-65535 

SOURCE .FILE FORMAT 

Source files are written to disk in the format required by the 
BASIC compiler, as follows: 

1. Files are variable-length record (VLR) type, as described in 
the TRSDOS Reference Manual. 

2. Each record in the file corresponds to one line of source 
program. The first six data bytes (after the length-byte) in a 
record represent the line number in ASCII form followed by a 
blank space. The carriage return (<ENTER>) used to terminate 
the line during line insertion is not stored. 

3. Text is stored exactly as it is displayed on the video, e.g., 
spaces are stored as spaces, not as a tab character. 

4. No end-of-text code is stored in the data file. 

---------ftad1elhaeli---------

PAGE 7 - 2 



TRS-80 MODEL I/III BASIC BEDI'r 

------------TRS-ao@ ___________ _ 

TO START THE EDITOR 

The editor program is included on the BASIC package diskette. 
It has the file name BEDIT. 

To use the editor, put the BASIC diskette into one of your 
drives (drive O for single-drive users), and under TRSDOS READY, 
type: 

BEDIT 

The editor will start up with the message: 

TRS-80 Basic Editor Ver. v.r 
Copyright (c) 1980 Tandy Corp. 

> 

Where vis the version and r is the release number. The> 
indicates you are in the command mode. 

--------1tad1elhaeli--------
PAGE 7 - 3 



TRS-80 MODEL I/III BASIC BEDIT @ ______________ _ 

MODES OF OPERATION 

There are three modes of operation: 
. COMMAND, for entering the editor commands 
. INSERT, for entering your text lines 
. EDIT, for interactive editing of a line of text 

COMMAND MODE 
The> prompt followed by the blinking cursor indicates the 
editor is waiting for you to type in a command. Every command 
must be completed by pressing <ENTER>. To cancel a command, 
press <BREAK>. 

INSERT MODE 
You enter text one line at a time; a line consists of up to 255 
characters, including the five-digit line number provided by 
BEDIT. Line numbers can range from Oto 65535. 

The I command puts you in the insert mode. When you start 
inserting a line, the editor displays the five-digit line number 
followed by the blinking cursor. Your text can begin in column 
seven. (See the BASIC Language Reference Manual for column-field 
uses in BASIC source programs.) 

To store the current line, press <ENTER>. The editor will 
display the next line number, and you can begin inserting into 
that line. To cancel the current line and return to the command 
mode, press <BREAK>. See the I Command for details. 

EDI'r MODE 
There are many powerful edit sub-commands -- identical in most 
cases to those in Model I/III Interpreter BASIC's Edit Mode. 
There is also a sub-edit insertion mode in which the keys you 
type are inserted into the line at the current cursor position. 

To start editing a line, use the E command. After editing the 
line, press <ENTER> to save the corrected line and return to the 
command mode. To cancel all changes made and return to the 
command mode, press <Q>. For further details, see E Command. 

----------ftad1elhaell----------

PAGE 7 - 4 



TRS-80 MODEL I/III BASIC BEDIT 

-------------TRs-ao@ ___________ _ 

USING THE COMMAND MODE 

Special terms used in the command descriptions: 

"text", "text buffer", "text area" 
All refer to the BASIC source program currently in RAM. 

"current line" 
The line most recently inserted, displayed or referenced in a 
command. When there is no text in RAM, current line is set to 
100. Immediately after a file is loaded, the current line is 
set to the beginning of the text. 

"increment" 
The value which is added to the current line number whenever the 
editor needs to compute a new line number. After startup, 
loading a new file, and when there is no text in RAM, the 
increment is set to 10. 

"line-reference" 
Either an actual line number from Oto 65535, or one of the 
following special abbreviations: 

Symbol 
# 

* 

"line-range" 

Meaning 
Beginning line of text (lowest-numbered line) 
Current line 
Last line of text (highest-numbered line) 

This can be either a single-line reference or a pair of 
line-references separated by a colon: 

Sample 
Command 

Pl00 
Pl00:300 
P#: • 

Meaning 

Prints line 100 only 
Prints all lines from 100 to 300 
Prints all lines from beginning to current 

---------llad1e/haeli--------
PAGE 7 - 5 



TRS-80 MODEL I/III BASIC BEDIT 

cf@---------------
"delimiter" 
A special character used to delimit (mark the beginning and end 
of) a string. Any of the following characters can be used: 

"#$%&' ( * + - I . , . . ; < = > ? 

Whichever character is used to mark the beginning of a string 
must also be used to mark the end of the string. 

Sample use ... 

'THIS" MARK' 
/X'8000'/ 
&~~~~~~~& 

Marks this string ... 

1rHIS " MARK 
X'8000' 

(seven blanks) 

(The n~n symbol represents a blank space. It is used only where 
necessary for emphasis or illustration.) 

SPECIAL KEYS IN •rHE COMMAND MODE 

<BREAK> 
Press this key to cancel the command you are entering, or to 
abort a command which is currently being executed. 

-> 
Advances the cursor to the next eight-column boundary 
(boundaries are at columns 8, 16, 24, ... ) 

<ENTER> 
Pressing this key at the beginning of a command line displays 
the current line. 

<up-arrow> 
Pressing this key at the beginning of a command line displays 
the line which precedes the current line. 

<down-arrow> 
Pressing this key at the beginning of a command line displays 
the next line after the current line. 

----------llad1e ae~---------------
PAGE 7 - 6 



TRS-80 MODEL I/III BASIC BEDIT 

shift<-
Erases the command you are entering. 

<@> 
Pauses Hand P commands. Press any other key to continue. 

PAGE 7 - 7 



TRS-80 MODEL I/III BASIC BEDIT 

COMMANDS 

Note: Spaces are not significant in command lines. For example, 
P 1 : 5 

has the same effect as 
Pl:5 

The P command is explained later on. 

B 

Displays the bottom line (last line in the text area). 

C/search-string/replacement-string/n 

Finds, changes, and displays the first n lines that contain 
search-string. In each of these lines, search-string is changed 
to replacement-string. ONLY THE FIRST OCCURRENCE OF 
search-string IN A SINGLE LINE IS COUNTED AND CHANGED. If the 
end of text is reached before n finds, the message "string not 
founduu will be displayed. 

Upon completion of the command, the current line is set to the 
line of the last find, or to the first line of text when uustring 
not found" is displayed. 

/search-string/ is a sequence of characters delimited by 
a matched pair of characters from the set: 

II # $ % & I * + , - • I ; < = > ? 

replacement-string/ is a sequence of characters terminated 
by the same character used to delimit search-string. 

n Tells the maximum number of "changes" you want. n can 
be a number or an asterisk. The asterisk means change 
and list all occurrences. If n is omitted, only the 
first occurrence is changed and listed. 

Sample 
Commands 

C/VAR=/NErr=/ 

Notes 

Changes the first occurrence of 

--------- l'lad1e ae~------------
PAGE 7 - 8 



TRS-80 MODEL I/III BASIC 

C 11 VAR="NErl1= 18 

C/RErrRY/R/4 

"VAR=" to "NET=" in the first 
line that contains it. 
Same as above. 
Changes the first occurrence of 
"RE1rRY" to "R" in the first four 
lines that contain it. 

C/MISPELING/MIS-SPELLING/* 

C/EXTRA//* 

Changes the first occurrence of 
VUMISPELING ID to "MIS-SPELLING n in 
every line that contains it. 
Changes the first occurrence of 
"EXTRA" to "" (null string) 

BEDIT 

i .. e .. , deletes the first "EXTRA" 
line that contains it. 

in every 

D line-range 

Deletes lines in the specified range. If line-range is omitted, 
the current line is deleted. 

Sample 
Commands 

D. or D 
D2 
D98:115 

Dl000:* 

·E line-reference 

Notes 

Deletes the current line. 
Deletes line number 2. 
Deletes lines found in the range 98 to 
115 .. 
Deletes all lines numbered 1000 or 
higher to end of text .. 

Starts edit mode using the specified line. If line-reference is 
omitted, the current line is used. 

Edit sub-commands: 

<ENTER> Ends editing and returns to command mode. 

shift<up-arrow> Causes escape from sub-edit insertion 
(X, I, and H sub-commands) and returns to 
edit mode. 

n <SPCBAR> Advances cursor n columns. 
If n is omitted, 1 is used. 

----------11 Ht 

PAGE 7 - 9 



TRS-80 MODEL I/III BASIC BEDI'r 

-------------TRs-so@ ___________ _ 

L 

X 

I 

A 

E 

Q 

H 

nD 

nC 

nSc 

nKc 

"Lists" working copy of the line and 
starts a new working copy. 

"Extends" line: positions cursor to end 
of line and enters sub-edit insertion mode. 
Use shift<up-arrow> to escape to edit mode. 

Enters sub-edit "insertion" mode at the 
current cursor position; use shift<up-arrow> 
to escape to edit mode. 

("Again") Cancels changes and starts a new 
working copy of the line. 

("End") Saves edited line and exits to 
command mode,> prompt. 

("Quit") Cancels changes and returns to 
command mode,> prompt. 

"Hacks" remainder of line beginning at 
current cursor position and enters sub-edit 
insertion mode. Use shift<up-arrow> to 
escape to edit mode. 

"Deletes" n characters beginning at current 
cursor position. If n is omitted, 1 is used. 
The deletion is not echoed; use <L> to see 
the line with characters deleted. 

"Changes" next n characters from the current 
cursor position, using the next n characters 
typed. If n is omitted, 1 is used. 

("Search") Move cursor to nth occurrence of 
character c. Search starts at next character 
after the cursor. If n is omitted, 1 is 
used. 

("Kill") Deletes all characters from current 
cursor position up to nth occurrence 
of character c, counting from current 
cursor position. If n is omitted, 1 is 
used. The deletion is not echoed; use <L> 
to see the line with characters deleted. 

---------- ltadaelhaell---------
PAGE 7 - 10 



TRS-80 MODEL I/III BASIC BEDI'r 

-------------TRS-ao@ ___________ _ 

F/search-string/n 

Finds and displays the first n lines which contain 
search-string, starting at the current line. ONLY THE FIRST 
OCCURRENCE OF search-string IN A SINGLE LINE IS COUNTED. If the 
end of text is reached before n finds, the message "string not 
found" will be displayed. 

Upon completion of the command, the current line is set to the 
line of the last find, or to the first line of text when "string 
not found" is displayed. 

/search-string/ is a sequence of characters delimited by 
a matched pair of delimiters chosen from the set: 

"#$%&' ( )*+,-./: ;<=>? 

n Tells the maximum number of "finds" you want. n can be a 
number or an asterisk. The asterisk means find and list all 
occurrences. If n is omitted, only the first occurrence is 
listed. 

Sample 
Commands 

F/VAR=/ 

F"VAR=" 
F/RE1rRY/4 

F/MISPELING/* 

H line-range 

Notes 

Finds and displays the first line that 
contains the string "VAR=" .. 
Same as above. 
Finds and displays the first eight lines 
containing at least one occurrence of 
"RETRY". 
Finds and displays every line containing 
at least one occurrence of "MISPELING". 

("Hard-copy") Lists to the printer all lines found in the 
specified range. 

The printer should be initialized (with FORMS) before you 
execute this command. 

----------llad1elhaeli----------
PAGE 7 - 11 



TRS-80 MODEL I/III BASIC BEDIT 

Sample 
Commands 

H #: * 
H7020 
H672:800 

Notes 

Lists all lines to the printer. 
Lists line 7020 to the printer. 
Lists all lines found in the range 672 to 
800 .. 

I start-line, increment 

Starts the insert mode. 

start-line is a line-reference telling the editor where to begin 
inserting into the text. If omitted, the current line 
is used. 

,increment is a number telling the editor how to compute 
successive line numbers. If omitted, the current increment 
is used. 

If start-line is already in use, the editor will start with the 
next line number (start-line+ increment). 

Special Keys in the Insert Mode 
-> Advances the cursor to the next eight-column 

boundary ( 8, 16 , 2 4 , .... ) . 

shift<

<-

Erases the line and starts over. 

Backspaces the cursor and erases the character. 

Marks the end of the current line. The editor will 
store the current line and start a new one, using 
.increment to generate the next line number. 

CAUTION: This does NOT renumber your line references! See N 
command .. 

Sample 
Commands 

I 

Notes 

Start inserting at current line number, 

--------- llad1elhaell---------

PAGE 7 - 12 



TRS-80 MODEL I/III BASIC BEDI'r 

I,l 

145,2 

1100 

L filespec 

using current increment. 
Start inserting at current line number, 
using 1 as an increment. If current line 
number is in use, start with current line 
plus 1 .. 
Start inserting at line 45 with an 
increment of 2. If line 45 is in use, 
start with line 47 .. 
Start inserting at line 100, using the 
current increment. If line 100 is in 
use, start with 100 plus increment .. 

Loads a source file from disk. If there is already text in RAM, 
the editor will ask whether you want to chain the new text onto 
the end of the old, or clear out the old first .. 

filespec is a TRSDOS file specification for a VLR text file. The 
file may have been created by this BASIC editor or by 
another means. However, it must be in the BASIC source file 
format. (See Source File Format.) 

Note: If you chain one file onto the end of another, the line 
numbers for the combined file will start at the previous 
first-line and will be incremented by the current increment. 

M 

Sample 
Commands 

L DEMO/BAS:l 
L XDATA 

Notes 

Load DEMO/BAS from drive 1. 
Load XDATA 

Prints the number of characters in the source text (excluding 
the editor's line numbers) and the amount of memory free for 
text storage. 

Sample 
Command 

M 

Notes 

A typical response in a 48K system 
might look like this: 
00121- TEXT 
39222- MEMORY 

---------1tafl1elhaell---------
PAGE 7 - 13 



TRS-80 MODEL I/III BASIC 

Meaning you have 121 bytes of text, and 
39222 free bytes of memory available. 

N start-line,increment 

Renumbers the entire text. 

Note: Do not use the renumber command inside your program 
unless you are not concerned wth line references (GOTO, 

BEDIT 

IF ... THEN ... , GOSUB, etc.). To renumber your program properly, 
use the Compiler BASIC RENUMBER command. 

start-line becomes the lowest line number when the text is 
renumbered. If start-line is omitted, the current line 
number is used. 

increment is used in computing successive line numbers. If 
omitted, the current increment is used. 

After renumbering, the current line is set to the highest line 
number in the renumbered text. 

Sample 
Commands 

N 

NlOO 

Nl00,25 

N,100 

P ·line-range 

Notes 

Renumbered text will start with current 
line; successive lines computed with 
current increment. 
Renumbered text will start with line 100; 
successive lines computed with the 
current value of increment. 
As above; line numbers at increments 
of 25. 
Renumbered text will start with current 
line number; line numbers at increments 
of 100. 

Prints the specified lines to the display. If line-range is 
omitted, 14 lines starting at the current line are displayed. 

---------- llad1elhaell----------
PAGE 7 - 14 



TRS-80 MODEL I/III BASIC BEDIT 

-------------TRS-so@) ____________ _ 

Q 

Sample 
Commands 

p 

P233 
P. 
P* 
Pl40:615 

Notes 

Prints 14 lines starting at current 
line. 
Prints line 233. 
Prints the current line. 
Prints the last line. 
Prints the lines within the specified 
range. Lines 140 and 615 don't have to 
be existing line numbers. 

Terminates session and returns to TRSDOS. The source text is 
not written to disk. 

R line-reference, increment 

Replaces contents of the specified line and continues in insert 
mode. If line-reference is omitted, the current line is used. 
If increment is omitted, the current increment is used. 

The R command is equivalent to the D (delete) command followed 
by the I (insert) command. When you enter the command, the 
editor deletes the specified line and puts you into the insert 
mode, starting with the line just deleted. 
After you press <ENTER>, the editor will continue in the insert 
mode, prompting you to enter the text of the next line number. 
To escape from the insert mode, press <BREAK>. 

Sample 
Commands 

Rl25,3 

R* 

Notes 

Prompts you to insert replacement 
text for line 125. Subsequent line 
numbers will be generated with an 
increment of 3. 
Prompts you to insert replacement 
text for the highest numbered line in 
the text area; subsequent lines will 
be generated using the current increment. 

--------ltadaolllaeli--------
PAGE 7 - 15 



TRS-80 MODEL I/III BASIC BEDIT 
-------------TRS-BO@ ___________ _ 

T 

Displays the top line (first line in the text area). 

W filespec 

Writes the text in RAM into the specified file. 

filespec is a TRSDOS file specification. If file already 
exists, its previous contents will be lost. 

Sample 
Commands 

W DEMO/BAS:l 
W XDATA 

Notes 

Save DEMO/BAS onto drive 1. 
Save XDATA/BAS onto first available drive. 

X/search-string/replacement-string/n 

This command is exactly like the C (Change) command, except that 
it displays the line to be changed and queries you (Change? ) 
each time it finds search-string. If you answer Y, the line 
will be changed; any other answer leaves the line unchanged. In 
either case, the process continues until all first occurrences 
have been found. 

Sample 
Command Notes 

X/MISPELING/MSP/* 
Changes the first occurrence of 
"MISPELING" to "MSP" 
in every line that contains it, but asks 
you to confirm each change before it 
is made. 

---------1tad1e/haeli---------
PAGE 7 - 16 



Section 4 

Programmer's 
Information 

Information en the Stand 
Alone Runtime System, 
Memory Usage, Assembly 
Language, Subprograms, 
and File Formats 

m::rc:rz::m::, TRS-BD 

CAT. NO. 
26-2204 

TM 

SOFTWARE 

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP. 





TRS-80 MODEL I and MODEL III 

RSBASIC 
PROGRAMMER'S INFORMATION 

SECTION 

JANUARY 16, 1981 



COPYRIGHT NOTICES 

TRS-8O MODEL I and MODEL III RSBASIC PROGRAMMER'S 
INFORMATION SECTION 
(C) 1981 by Ryan-McFarland Corporation; Licensed to Tandy 
Corporation. All rights reserved. 

Reproduction or use, without express permission, of 
editorial or pictorial content in any manner is prohibited. 
While every precaution has been taken in the preparation of 
this manual, the publisher assumes no responsibility for 
errors or omissions. Neither is any liability assumed for 
damages resulting rrom the use of the information contained 
herein. 



TABLE OF CONTENTS 

I. INTRODUCTION ............................ . 

I I. OVERVIEW ................................ . 

I I I. THE FULL DEVELOPMENT SYSTEM ............. . 
The Edi tor ........................... . 
The Compiler ......................... . 
The Runtime .......................... . 
Program Debug ........................ . 

IV. THE STAND-ALONE RUNTIME SYSTEM .......... . 
STAND-ALONE DEBUG .................... . 
STAND-ALONE DEBUG COMMANDS ........... . 

BREAKPOINT Command ............... . 
DISPLAY Command .................. . 
DUMP Command ..................... . 
GO Command ....................... . 
SYSTEM Command ................... . 

V. MEMORY USAGE AND DATA STORAGE ........... . 
ObJect Program Structure ............. . 
Storage of Integers .................. . 
Storage of Decimals .................. . 
Storage of Numeric Arrays ............ . 
Storage of Strings ................... . 
Storage of String Arrays ............. . 
Stack Usage .......................... . 

VI. ASSEMBLY LANGUAGE SUBPROGRAMS ........... . 
Setup ................................ . 
Parameter Passing .................... . 
Returning to RSBASIC ................. . 

VI I. THE BASIC FILE SYSTEM AND FILE FORMATS .. . 
System Supported Files ............... . 
RSBASIC File Formats ................. . 
RSBASIC, RSCOBOL, and ISAM Files ..... . 

8/i 

8/2 

8/3 
8/3 
8/4 
8/5 
8/5 

8/7 
8/7 
8/8 
8/8 
8/9 
8/9 
8/9 

8/10 

8/11 
8/11 
8/12 
8/13 
8/14 
8/16 
8/18 
8/20 

8/21 
8/21 
8/21 
8/22 

8/23 
8/23 
8/26 
8/27 



I. INTRODUCTION 

This document contains all of the information required to 
compile, run and debug RSBASIC language programs on the 
Radio Shack TRS-80 Model I and Model III Microcomputers 
under the TRSDOS Operating System. 

It assumes the reader is familiar with the RSBASIC Language, 
the general operation of the TRS-80 Model I and Model III 
Microcomputers, and the TRSDOS Operating System. The reader 
is specifically referred to: 

TRS-80 Model I and Model III RSBASIC Language Manuals 

TRS-80 Model I and Model III Operation Manuals 

TRS-80 Model I and Model III Disk Operating System 
Reference Manuals 

This guide is organized such that each chapter fully 
describes a particular operational procedure. While the 
experienced user need only refer to the appropriate chapter, 
it is recommended that the first-time user read the complete 
guide prior to operation of the RSBASIC system. 

PAGE 8 - 1 



I I. OVERVIEW 

RSBASIC operates on THE TRS Model I and Model III Micro 
computers under the TRSDOS Operating System. It is actually 
two separate systems. 

The full development system is used for editing, compiling, 
and checking out RSBASIC programs. The system in use must be 
e~uipped with 48K bytes of memory to run the full 
development system. 

The Stand-Alone Runtime system (RUNBASIC> is used for 
execution of previously compiled programs and execution and 
checkout of previously compiled programs whose resultant 
obJect programs re~uire more memory than is available under 
the full development system. RUNBASIC will run on a TRS 
Model I or Model III with as little as 32K*b~tes of memory. 

*On a 32K svstem, COMPILER BASIC will consume most of the 
memorv. Onlv about 1500 bvtes will be left for the user. 

PAGE 8 - 2 



III. THE FULL DEVELOPMENT SYSTEM 

The Full Development System consists of 
Resident which always resides in memory, 

1) The Editor, 
2) The Compiler, and 
3) The Runtime. 

four modules: the 
and three overlays: 

The Full Development System is entered via the RSBASIC 
command. The for mat is as -f o 11 ows: 

RSBASIC CfilespecJ [{T=nnnn,S=xxxx}J 

where: 

filespec is an optional RSBASIC source or obJect rile which 
is to be run by the RSBASIC system. If filespec is omitted, 
the system prompts for input with an asterisk ( '*'). 

T=nnnn indicates the highest memory address accessible to 
the RSBASIC system. The address nnnn is in hexadecimal 
notation. 

S=xxxx indicates the system should reserve hexadecimal xxxx 
bytes for stack space. The default is &CO. This number 
should not be less than &20. 

To exit the system, the SYSTEM command with no parameters is 
used. This will return control to the TRSDOS operating 
system. 

The Editor 

The Editor overlay is loaded by the Resident when editing 
functions are required. 

The Editor allows manipulation of source programs. It is 
used to build the source programs which will be compiled and 
executed by the other parts of the system. 

PAGE 8 - 3 



The Compiler 

The Compiler is the heart of the RSBASIC System. It compiles 
the RSBASIC source statements into an interpretive obJect 
format which will be executed by the RSBASIC Runtime. 
Compilation proceeds from the beginning to the end of the 
program with any error information noted along the way. 

There are four methods of invoking the Compiler. One is to 
issue the COMPILE command, specifying an input source file 
and an output obJect file. This method compiles the source 
program into obJect code one statement at a time and outputs 
the obJect code to the specified output file. The COMPILE 
command also allows the options of producing a listing of 
the source along with a cross-reference and memory-map. This 
listing can optionally be routed to the printer or, in a 
future release, to a disk file. 

COCMPILEJC, Jfilespec, filespec [{LIST, MAP, PRT, XREF}j 

The second method of invoking the compiler is to issue the 
RUN command with no parameters. This allows compilation and 
execution of the RSBASIC program currently in memory. 

The third method is to issue the RUN command giving the 
optional filespec (RUN filespec>. If 'filespec' specifies a 
source program, memory is cleared, the source program is 
read into memory, compiled, and executed. The '-filespec' may 
also specify an obJect program, in which case the 
compilation step is unnecessary. 

The fourth method of invoking the compiler is to issue the 
STEP command. I.P necessary, this will compile the RSBASIC 
program in memory and allow the user to execute the 
resultant obJect code. The line number of the next line to 
be executed will be printed on the screen. 

Control returns to the command mode following completion of 
a compilation, execution, or STEP. 

PAGE 8 - 4 



The Runtime 

The Runtime overlay is loaded to execute the RSBASIC obJect 
code in memory. It processes until one of the following 
occurs: 

1) a user-defined breakpoint is reached, in which case a 
message is printed on the screen and control returns to 
the command mode. 

2) when executing a STEP command, the start of the obJect 
code for the next (or the specified number) source line 
is reached, in which case a message is printed on the 
screen and control returns to the command mode. 

3) a nonfatal error is detected, 
message is printed on the 
continued. 

in which case an error 
screen and execution is 

4) a fatal error is detected, in which case an error 
message is printed on the screen, all open files are 
closed, and control returns to the command mode. 

5) the program executes a STOP or END statement or executes 
the last statement of a program, in which case a stop 
message is printed on· the screen, all open files are 
closed and control returns to the command mode. 

Program Debug 

In order to enhance program development, a debug facility is 
provided. Debug is initiated in one or three ways: 

1) The STEP command, 
STEP 

2) The BREAK command, 
BREAK line number, line number, ... 

3) The TRACE command, 
TRACE ON/OFF 

The STEP command allows the user to execute his program one 
or more lines at a time. After each step, control returns to 
the command mode to allow the user to input new debug 
commands. Debug is complete when either the STOP or END 
statements have been reached or the GO command is issued. 

PAGE 8 - 5 



The BREAK command is used to set breakpoints at various 
lines within the program. Execution is initiated with the GO 
command and proceeds until either a breakpoint is reached or 
the STOP or END statements have been executed. Control is 
again returned to the command mode. 

The TRACE command 
line number executed. 
other debug commands. 

LINE nnnn 

is used to produce a trace line of each 
TRACE may be used in conJunction with 
The format of the TRACE line is 

where nnnn is the line number of the next line to be 
executed. 

When control has returned to the command mode, the remaining 
debug command may be used, the DISPLAY command: 

DICSPLAYJ [[routine name]; )variable, [[routine name]; ]variable. 

where: 

routine name describes the routine where the variable 
resides. Complete descriptions of all debug commands may be 
found in the RSBASIC Language Manual. 

PAGE 8 - 6 



IV. THE STAND-ALONE RUNTIME SYSTEM 

The Stand-Alone Runtime System is a single module system 
which interprets obJect code from previously compiled 
RSBASIC source programs. It is invoked with the RUNBASIC 
command and processes in much the same manner as the Full 
Development System Runtime. The Stand-Alone Runtime System 
debugging facility, however, differs in that only 
breakpoints may be set; there is no STEP facility. At a 
breakpoint data items may be displayed to checkpoint program 
accuracy. 

Formato~ the RUNBASIC command: 

RUNBASIC filespec [{D,B,T=xxxx, S=nnn} 

where: 

D causes the system to load and execute with 
interactive debug. 
T = xxxx reserves memory above hexadecimal address 
xxxx for user subroutines. (default is TOP) 
B enables the BREAK key for halting execution 
(default is disabled) 
S = nnnn reserves hexadecimal nnnn bytes for the 
runtime stack. (default is &CO) 

The options may appear in any order. 

STAND-ALONE DEBUG 

The commands to the Stand-Alone Debug module are much the 
same as the corresponding commands to the Full Development 
System. Since the symbol table is not available to the debug 
module, locations corresponding to the listing generated by 
the compiler are used to denote both line numbers in the 
BREAK command and variables in the DISPLAY command. 

Real and integer scalars in the common area are denoted by a 
single quote after the location Just as they are on the 
Symbolic Memory Map; i.e., 01A,. is location 01A in the 
common area. An asterisk before the location is used to 
denote formal parameters to subroutines; i.e., *0347 is used 
to display the current contents of the formal parameter at 
location 0347. Note that a leading O is needed on the 
location when the leading hexadecimal digit is A through F 
to be sure the debug module does not mistake it for a 
·;ubprogram name. 

PAGE 8 - 7 



Ir the D option is chosen, debug will prompt for a command 
under the following circumstances: 

1) after the program to be run is loaded into memory, but 
before execution begins. 

2) after a message is printed on the screen detailing the 
filespec specified in a CHAIN statement and where the 
statement occurred. 

3) after loading the program specified 
statement, but be.Pore execution begins. 

in a CHl'-"iIN 

4) after any fatal error message is printed on the screen. 

5) after normal termination of the program. 

At any of the above points, any debug command may be 
entered, however, at points 4) and 5), 'the GO command and 
the SY command without a parameter will both cause a return 
to the TRSDOS READY mode. 

STAND-ALONE DEBUG COMMANDS 

All commands to the debugger are two characters only; 
anything else results in a COMMAND SYNTAX ERROR. 

BREAKPOINT Command BR <address)-, ... 

The breakpoint command will cause execution of the RSBASIC 
program to be suspended when the instructon at <address> is 
reached. 

I .P not qua 1 i -Fi ed, <address> re.Pers to the II current II program 
or subprogram; that is, the program in which execution was 
suspended by the breakpoint. Before execution begins, the 
current program is defined as the main program. 

A semicolon before the <address> forces it to be relative to 
the main program, while a subroutine name before the 
semicolon forces the <address> to be relative to that 
subroutine. 

The breakpoint command only (not followed by <address>> 
clears all breakpoints previously set. 

PAGE 8 - 8 



DISPLAY Command DI <address>, ... 

The display command formats the current contents of a 
variable according to its type and prints it. The <address> 
is that location corresponding to the desired variable on 
the Symbolic Memory Map generated by the compiler. 

An unqualified <address> defaults to that program in which 
execution was suspended, or the main program if execution 
has not begun. A semicolon before the <address> forces it to 
be relative to the main program, while a subroutine name 
before the semicolon forces the <address> to be relative to 
that subroutine. 

Type information is conveyed by the characters 11 '¼ 11 and 11 $ 11 

appended to <address>. The type defaults to real. An array 
element may be displayed by appending the subscripts in 
parenthesis to <address>. Subscripts must be integer 
constants. 

For Example: 

DI SUB1;*0304$(1, 1),;0306% 

The above command will display the current contents of the 
string array element in the first row and first column of 
the two-dimensional string array which was passed as the 
formal parameter at location 0304 to subroutine SUBl, 
followed by the integer variable at location 0306 in the 
main program. 

DUMP Command DU <address 1>[-<address 2>J 

The dump command is used to dump memory as hexadecimal 
bytes. The qualification of <address 1> is the same as for 
the breakpoint command. 

GO Command GO 

The go command either begins execution or resumes after a 
breakpoint is reached. 

PAGE 8 - 9 



SYSTEM Command SY [ 11 TRSDOS System Command"] 

The system command passes a string to TRSDOS as if the 
string were entered in response to the TRSDOS READY prompt. 
Any parameters to the passed command are ignored. Control 
does not return to RSBASIC. 

PAGE 8 - 10 



V. MEMORY USAGE AND DATA STORAGE 

Ob 1ect Program Structure 

RSBASIC programs use two distinct storage areas: PSECT for 
storage of instructions, constants, addresses, and dope 
(array and string descriptors), and DSECT for storage of all 
variable data. The system will allocate both these sections 
within its controlled memory area as follows: 

COMMON Storage 
(I-r any) 

+-----------------------+ 
MAIN ROUTINE 
PSECT Storage 

+-----------------------+ 
MAIN ROUTINE 
DSECT Storage 

+-----------------------+ 

+-----------------------+ 
SUBROUTINE N 
PSECT Storage 

+-----------------------+ 
SUBROUTINE N 
DSECT Storage 

+-----------------------+ 
ADDRESS TABLE 

PAGE 8 - 11 



Storage of Integers* 

Integers are stored in 16-BIT two's complement form. The 
least significant byte is stored in the first memory byte 
and the most significant in the second. The examples below 
illustrate this storage format. 

Storage of +5 at hex address 00A1: 

7 6 5 4 3 2 i 0 

00Al 
00A2 

l O O O O O 1 0 1 : 
: 0 0 0 0 0 0 0 0 l 

Storage of -5 at hex address 0073: 

7 6 5 4 3 2 1 0 

0073 
0074 

: 1 1 1 1 1 0 1 1 l 
l 1 1 1 1 1 1 1 1 l 

(-S=(COMPLEMENT OF +5)+1) 

The numbers which may be thus represented are the integers 
in the range 

This, there.Pore, 
RSBASIC system. 

-32768 TO +32767 

de.Pines the range of integers in the 

*For more information on the storage of integers in two's 
complement form, see "TRSB0 Assemb 1 y Language Programming 11 

by Bill Barden, Jr., Radio Shack Catalog Number 62-2006. 

PAGE 8 - 12 



Storage of Decimals 

Decimals are stored in 8 bytes with the first byte 
containing the sign and exponent and the remaining 7 bytes 
containing 14 binary coded decimal digits representing the 
mantissa. 

The first bit or the first byte is the sign. AO bit denotes 
a positive number and 1 bit denotes a negative number. The 
other 7 bits represent a biased binary exponent of ten. The 
exponent is biased by &40. That is, an exponent of &40 is 
equivalent to 0. 

The mantissa is normalized to the left. This means the first 
digit of the mantissa is zero only if the number is zero. 
The exponent is adJusted accordingly. An assumed decimal 
point is to the left of the mantissa. 

The examples below illustrate this storage format. 

Storage of 5.6 at hex address OOA1: 

OOA1 : 4 1 l 5 6 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 

Storage of -5.6 at hex address OOA9: 

OOA9 : C 1 : 5 6 : 0 0: 0 0: 0 0 : 0 0 : 0 0: 0 0: 

Storage of 2.368714£10 at hex address 0081: 

0081 I 4 B : 2 3 I 6 8 : 7 1 : 4 0 l O O l O O : 0 0 l 

This is equivalent to 

.2368714 X 10**(75-64) 

or .2368714 X 10**<11) 

The numbers which may be thus represented are the real 
numbers in the range 

-0.99999999999999*10A+63 to -0. 99999999999999*10A-64 
and +0.99999999999999*10A-64 to +0.99999999999999*10A+63 

PAGE 8 - 13 



Storage of Numeric Arrays 

Arrays of numbers are stored in memory by row with each 
number occupying two bytes for integer and eight bytes for 
decimal. The storage of single and double dimensioned arr~ys 
is illus·trated in the two diagrams below: 

Single dimension integer array A% with 3 members 
starting at hex address 0132: 

0132 
0133 
0134 
0135 
0136 
0137 

l A'Y..(0) 

: A'Y..(1) 

I A'Y..(2) 

Double dimensioned integer array B'Y.. with 3 rows (first 
subscript) and 2 columns (second subscript) starting at 
hex address 3EB7: 

3EB7 -----------
3EBB I B'Y..(0,0) I 

I I 

3EB9 -----------
3EBA I Bo/.CO, 1) I 

I I 

3EBB -----------
3EBC I Bo/.(1,0) I 

I I 

3EBD -----------
3EBE I Bo/.< 1, 1) I 

' I 

3EBF -----------
3ECO I Bo/.(2,0) ' I I 

3EC1 -----------
3EC2 I B%(2, 1) I 

' I 

-----------
As can be seen from the examples above, the address of an 
element in a single dimensioned array is 

ARRAY BASE+ S*(SUBSCRIPT) 

while the address of an element of a double dimensioned 
array element is 

ARRAY BASE+S*((MAX SUBSCRIPT2+1)*8UBSCRIPT1+SUBSCRIPT2) 

PAGE 8 - 14 



where S is either 2 for integer or 8 -for decimal. For 
instance, 

A%(1) above would be: 

0132+2*(1)=0134 

8%(1,0) above would be: 

3EB7+2*((1+1)*1+0)=3EBB 

The single dimensioned array can be thought of as a special 
case of the double dimensioned array with a MAX SUBSCRIPT2 
of -1 if its subscript is treated as "SUBSCRIPT2". This 
implies that in each subscript calculation, two constants 
will be required -- the ARRAY BASE and MAX SUBSCRIPT2. MAX 
SUBSCRIPT! is also needed for subscript checking. 

For each array in the RSBASIC system, these three constants 
are stored in a memory block referred to as the array dope. 
In the example below, the array dope for the two example 
arrays is shown. 

Array Dope for A% and B¾ above 
Dope begins at hex address 1A75 

-------
A% Dope 1A75 I 3 2 I A% I I 

1A76 I 0 1 I 
I I 

-------
1A77 I 0 2 I A% I I 

1A78 I 0 0 I 
I I 

-------
1A79 I F F I A% I I 

1A7A I F F I 
I I 

-------

Base 

Max Subscript! 

Max Subscript2 

1A7B I 0 0 I Array type (0=integer, 1=real) I I 

1H7C ' 0 0 I not used I I 

-------
B'Y.. Dope 1A7D l B 7 I 8% Base I I 

1A7E I 3 E I 
I I 

-------
1A7F ' 0 2 I B% Max Subscript1 I l 

1A80 I 0 0 I 
I I 

-------
1A81 I 0 1 I 8% Max Subscript2 I I 

1A82 ( 0 0 I 
I I 

-------
I 0 0 f Type (integer) t I 

I 0 0 I not used I I 

-------

PAGE 8 - 15 



Storage of Strings 

St r i n g s are s tore d one ASC I I c ha T' a c t er p er b y t e. Th e c u r re n t 
length of the string in bytes is stored in a one-byte binary 
field at the start or the string. The examples below show 
how this works. 

"HELLO" stored at hex address 0175 

-------
0175 I 0 5 I 

I I Current Length 
--------

0176 I IIHII ' I I 

-------
0177 I "E II I 

I I ....,. ____ .,__ 

Current Value 
0178 I "L" C 

I I 

-------
0179 I IIL u I 

I I 

-------
017A I ., o., I 

I I 

-------

String Variable C$, Max Length=10 
Starting at hex address 268A 
Current value is "BASIC" 

-------
C$ 268A I 0 5 I 

I I C$ Current Length 
-------

268B I "Bu I 
I I 

-------
268C I "A" I 

I I 

-------
268D I "Su I 

I I C$ Current Value 
-------

268E I fl I II I 
I I 

--------
268F I "C" I 

' I 

---------
2690 X 

-------
2691 X 

-------
2692 X C$ Currently Unused 

-------
2693 X 

-------
2694 X 

-------

PAGE 8 - 16 



Strings may be empty, i.e., they may have a current length 
of 0, or they may have any length up to and including their 
declared maximum. For each declared string, a total of MAX 
LENGTH+l bytes is reserved for the storage of the string and 
its current length. 

During program operation, the MAX LENGTH of a string 
variable will be required to control storing operations into 
the string. Thus, for string variables, two constants are 
required during program operation -- the STRING ADDRESS as 
well as the MAX LENGTH. 

For each string variable, these constants are stored in a 
memory block called the string dope. In the example below, 
string dope is shown for the example string C$. 

String Dope for C$ 
Dope begins at hex address 2BC1 

C$ DOPE 2BC1 

2BC2 

2BC3 

: BA 

: 26 

: OA 

PAGE 8 - 17 

C$ Address 

C$ Max Length 



Storage or String Arrays 

Strings may also be stored in single or double dimensioned 
string arrays in which each element has the same maximum 
length but may, of course, have uniq_ue current value - and 
length. The example below shows the storage of a single 
dimensioned string array A$ having three elements each with 
a maximum length of S characters: 

String Array A$, Max Length=5, 3 elem~nts 
Starting at hex address 75A3 

A$< 0) = 11 HELL0 11
, A$ ( 1) = 11 FROM 11

, A$ ( 2) = 11 RMC 11 

A$(0) 7SA3 

75A4 

75A5 

75A6 

75A7 

75A8 

A$(1) 75A9 

75AA 

7SAB 

75AC 

75AD 

75AE 

A$(2) 75AF 

7580 

7581 

75B2 

75B3 

75B4 

-------
I 0 s I 
I I 

-------
I fl H II I 
I I 

-------
I IIE II I 
I I 

-------
I ULU I 
I t 

-------
I II L II I 
I t 

--------
I "0" I 
I I 

----.... --
I 0 4 I 
I I 

-------
f fl F II t 
f I 

-------
I "RII I 
f I 

-------
I "Ou I 
I I 

-------
I "M" I 
I I 

-------
X 

-------
I 0 3 I 
I r 

-------
I II R If I 
I I 

---------
I "Mu I 
I I 

-------
I II C II I 
I I 

---------
X 

-------
X 

.... ------

PAGE 8 - 18 

A$(0) Current Length 

A$(0) Current Value 

A$(1) Current Length 

A$(1) Current Value 

A$(1) Currently Unused 

A$(2) Current Length 

A$(2) Current Value 

A$(2) Currently Unused 



Item order of double dimensioned string arrays is the same 
as for double dimensioned numeric arrays. 

The address of a single dimensioned string array element is 
calculated as follows: 

STRING ARRAY BASE+(MAX LENGTH+l)*(SUBSCRIPT) 

e.g., for A$(1) above: 

75A3+(5+1)*(1)=75A9 

The address of a double dimensioned string array element is 
calculated as follows: 

STRING ARRAY BASE+(MAX LENGTH+l)* 
((MAX SUBSCRIPT2+1>*SUBSCRIPT1+SUBSCRIPT2)) 

Dope for string arrays is similar to dope for arrays or 
numbef·s. The first two bytes are the STRING BASE, followed 
by two bytes for MAX SUBSCRIPT1, followed by two bytes for 
MAX SUB SC R IP T2 < -1 i -f s i n g 1 e d i mens i one d ) , r o l 1 owed b y a 
one-byte array type (02 for string), followed by a one-byte 
MAX LENGTH. 

In the example below, string dope is shown for the example 
single dimensioned string array A$. 

String Dope for A$ 
Dope begins at hex address 2BC4 

-------
A$ Dope 2BC4 I A3 A$ Address r 

2BC5 I 75 I 

-------
2BC6 I 02 A$ Max Subscript 1 I 

2BC7 ' 00 I 

-------
2BC8 l FF A$ Max Subscript 2 
2BC9 I FF I 

-------
' 02 Array Type I 

I 05 A$ Max Length ' -------

PAGE 8 - 19 



Stack Usage 

An RSBASIC program uses the stack for storing return 
addresses and the state of subroutines. 

Each GOSUB and function call CDEF function) uses two bytes. 

Each CALL to an RSBASIC external subroutine uses 10 bytes. 

The system uses about 32 bytes for internal storage. 

To calculate the expected stack size, estimate the maximum 
number of nested gosubs, function calls1 and subroutines 
that could occur in a program. The stack size should be 
2*(number of nested gosubs and function calls)+ 10*Cnumber 
of nested subroutines>+ 32. 

For example, a program which could nest to a depth of 80 
gosubs would require a stack size of ~CO bytes. 

The system checks for stack overflow and for RETURN's 
without a matching GOSUB at execution. The size of the stack 
is determined by the S option in both RUNBASIC and RSBASIC. 
The default is &CO bytes. 

PAGE 8 - 20 



VI. ASSEMBLY LANGUAGE SUBPROGRAMS 

Assembly language .subprograms may be called by RSBASIC 
programs. However, the user is responsible for loading them 
by use of the TRSDOS LOAD command into memory locations 
which do not conflict with the RSBASIC system and for 
protecting them from overwrite by the RSBASIC system via the 
T <top of memory) parameter on the RSBASIC and RUNBASIC 
commands. 

Setup 

Calling an assembly language subprogram from an RSBASIC 
program requires the same statement format as a normal 
RSBASIC subprogram call. However, since .the RSBASIC system 
will not know where the user's assembly language program is 
loaded, this information must be supplied via the EXT 
statement in the format; 

In EXT subname = XXXX, ... 

where: 

subname is the subprogram's name as used in CALL's of 
the subprogram, and XXXX is the address where it has 
been, or will be, loaded. 

Parameter Passing 

Upon entry to the user's assembly language subprogram 
information from the RSBASIC system is passed as follows: 

(SP)---> the return address* 

BC---> the calling routines parameter list (if any), 

DE---~ a parameter decoding routine for use in retrieving 
subroutine parameter addresses and types. 

*Note: The Runtime requires that information currently on 
the stack other than the return address must not be altered 
and must remain in its relative position. 

PAGE 8 - 21 



In order to pick up any parameter addresses, the routine 
referenced in DE must be 'called'. Since this routine has 
saved all pertinent parameter information, it requires no 
parameters; however, it returns the following: 

B = argument type, 0 for integer 
1 for real 
2 for string 

DE= argument address (for string scalars, this is the 
address of the string dope, for 
arrays, this is the address of 
the array dope) 

A= return code, 0 for argument returned 
-1 for no more arguments 

Care must be taken when passing parameters back to the 
RSBASIC program to ensure that their formats are correct 
<see Storage of Data section>. 

Returning to RSBASIC 

At completion of an assembly language subprogram, return is 
made to the calling program by passing control to the 
address which was pointed to by the stack pointer. 

PAGE 8 - 22 



VII. THE RSBASIC FILE SYSTEM AND FILE FORMATS 

System Supported Files 

Three types of files are supported in RSBASIC: sequential, 
d i rec t ( rand om ) , and i n d e x e d seq_ u en t i a 1 ( I SAM ) . 

Files are specified in the user's program in a manner 
consistent with the TRSDOS filespec, of the form 

filename/ext. password:d(diskette name) 

where: 

'filename' is required. 

'/ext' is an optional name-extension. 

1
• password' is an optional password. 

password checking is performed. 
When omitted no 

':d' is an optional drive specification. When omitted 
the system does an automatic search, starting with drive 
0. 

· 
1 (diskette name)' is optional. When omitted no disk name 
checking is performed. 

Sequential Files 

Sequential files are created by Runtime as either var·iable 
length or fixed length records, according to user 
specification Ci. e., if a LENGTH parameter is supplied in 
the OPEN statement, the records will be fixed length; 
otherwise, they will be variable length). If the file exists 
at OPEN time, the file type and record length are used as 
defined by TRSDOS. 

Sequential files do not allow DELETE or Update. The maximum 
record length for sequential files is 255 bytes. 

Direct Files 

Direct files are fixed length record (FLR) files. They 
differ from standard TRSDOS Direct files in that appended to 
the front of each record is a two-byte record length. The 
maximum record length for direct files is 254 bytes. 

PAGE 8 - 23 



Indexed Files 

Indexed (ISAM) ~iles may be referenced in either the 
sequential or random mode. Each record in an indexed file is 
uniquely identified by the value of the associated key. In 
RSBASIC, the key need not be part of the data written in the 
file. It is used as a roadmap in order to retrieve the 
record on whicH the data is sto~ed. 

The RSBASIC single-key ISAM structure is built on a TRSDOS 
direct file with 256-byte physical records. Internally, the 
ISAM module uses 32-byte logical records called allocatable 
units (AU's). 

There are four types of obJects in an ISAM file: 

1) Header (1 AU) 
2) Tree <each node= 16 AU's) 
3) Linked Lists 
4) User data records 

The file header starts at AU 1 (the first). There is only 
one tree in which all key values are maintained. The header 
contains a pointer to the key tree's root node. The h~ader 
also contains pointers to the start of two free lists. These 
two lists contain free directory (tree) nodes and free user 
records. Directory nodes contain pointers which point to the 
associated data record. 

When a new obJect (node or data record) needs to be 
an entry on one of the free lists is reused if one 
Otherwise, space is allocated at the current end 
Variable length data is sto~ed in fixed len9th data 
to allow space to be recovered more easily. 

PAGE 8 - 24 

created, 
exists. 

o.P .Pile. 
r· E• i: o r· d ::. 



The physical format of the header, a node record, and a user 
data record are as follows: 

Header: 

Node: 

header code word 
# of AU's to store header (1) 

# of AU's to store data record <m> 
head of free node list 
number of free nodes 
head of free record list 
number of free records 
head or free duplicate block list (0) 
number of free duplicate blocks (0) 
next free AU 
flag word 
# of keys (1) 
key size 
key offset (0) 
tree height 
root of index tree 
next available stamp# (0) 

node count word 
number of keys in this node 
left pointer 

data pointer 
I key value 
l right pointer 

User Data Record: byte count 

: data byte 

Indexed records are 'mapped' onto direct file records of 256 
bytes (standard TRSD0S sector size) regardless of their 
actual size. 

PAGE 8 - 25 



The formula shown below should approximize the number of 256 
byte sectors that a given file will require on disk. The 
actual number of granules is this number divided by 5. 

#Sectors= 1 + INT(1 + R* INT<<S + 33)/32)/8) 

+ INT(1 + 2*R/INT(252/K + 8) 

where: INT= Integer value 

R = Number of records in the file 

S = Size of largest record (in bytes) 

K = Size of key field (in bytes) 

Example: 1000 records i file (R = 1000); 
max record size is 190 bytes (8 = 190); 
key is 6 bytes (K = 6) 

#Sectors: 1 + INT(1 + 1000*INT<<190 + 33)/32)/8) 

+ INT<l + 2*1000/INT(252/(6 + 8)) 

= 1 + 751 + 112 = 864 

RSBASIC File Formats 

Within the system file 
subfile systems which 
system file formats: 

1) Free Format, 
2) USING Format, and 
3) Binary Format. 

structure RSBASIC supports three 
can be mapped over any of the three 

Free Format files are constructed to resemble an RSBASIC 
program input stream with trailiny zeros and blanks deleted 
and items separated by commas. All items are in ASCII 
format, so that an INPUT operation from such a file differs 
from console input only in the fact that input comes from a 
diskette file. 

USING format files are in ASCII format, but items are not 
separated by commas; r.ather, they are set into a string 
structure as dictated by the elements of the USING string 
spec~fied when the file was written. 

PAGE 8 - 26 



Binary Format files, 
internal format in th 

unlike the others, are 
following method: 

constructed 

1) int gers are output as two-byte binary numbers; 

in 

2) decimals are out ut in their internal format with 
trailing zeros truncated and with a leading one-byte 
length count; 

3) strings are output as a one-byte count followed by their 
ASCII representation minus trailing blanks. 

The whole record is then output with a one-byte record 
length count in front. 

RSBASIC, RSCOBOL, and ISAM Files 

The format of the RSBASIC indexed sequential (ISAM) file was 
designed to provide a method by which an RSBASIC program and 
an RSCOBOL program may communic te. By adhering to a few 
simple rules, the RSBASIC programmer may successfully read, 
write an update an ISAM file created by RSCOBOL. The rules 
are simple but quite stringent for both RSCOBOL and RSBASIC. 
If ny of them ar ignored, the data in the rile may be 
irretrievably lost. 

1) The file must be single-key only 

RSBASIC language syntax only permits one key 

2) The key must be written as part of the data record 

RSBASIC ISAM format does not require this, 
does. 

3) The records must e fixed-format ASCII 

but RSCOBOL 

RSCOBOL has provision for neither binary data nor 
variable length records. The easiest way for an RSBASIC 
programmer to ensure this is with the PRINT USING and 
INPUT USING statements. The Image used is analogous to 
the RSCOBOL record descriptor. 

If the RSBASIC ISAM file is not to be accessed by an RSCOBOL 
program, the above rules do not apply and any of the RSBASIC 
I/0 statements may be employed. 

Notice that in RSBASIC the record is padded on the right 
with blanks or zeroes, as appropriate for the record type 
( ASC I I or b i nary , re s p e c t i v e 1 y ) . 

PAGE 8 - 27 



Radio Shack - Tandy Corporation 
Inforrnation Bulletin 03/22/84 

Subject: RunBasic for RSl3ASIC compiled programs .. 

Hovi to format ,a 5w•l/4 diskette for RunBask as a stand alone@ 

L Insert 'Compiler Basic' diskette in drive 0 .. 

2. Insert a blank diskette in drive l 

30 1 BJ\ CK UP I Source drive O to Destination Ori ve 1 

4. Perform follott1ing sequence: 

PURGE*:l (SYS) 
Master password? PASS 14 0 RD 
RUN B ASI CIC M D:l (Y /N/Q) ? N 
CONVERT/CMD:1 (Y/N/Q)? N 
XFE RSV S/C M D:1 ('f/N/Q) ? Y 
L PC/CM D:l (V /N/Q) ? N 
R U N B A SI C IO V i_ : l ( Y / N / Q ) ? N 
BEDIT/CMO:l (Y/N/Q)? Y 
RSBASIC/CMD:l (Y/N/Q)? Y 
R SB ASIC /UB:l (''(/N/Q) ? Y 
RSBASIC/UO:l (Y /N/Q) ? Y 
R SB A SI C / 0 1_ F : 1 ( Y / N / Q ) ? Y 
UST /BAS:1 (Y /N/Q) ? Y 
S A M P '- E /'- ST : l ( Y IN IQ ) ? Y 
SAM p,_ E/OBJ:l (Y /N/Q) ? Y 
1_IST/:..ST:l (Y /N/Q) ? Y 
UST/Of:LJ:l (Y/N/Q)? Y 

5. The procedure is compl•~ted~ The diskette in drive 1 is now ready for 
Copying com piled RS BASIC programs onto it and can be used as a stand alone 
diskette in drive O. 



--



Sequential reading or an ISAM file is possible in RSBASIC by 
simply not specifying a KEY on the INPUT or READ statement. 
The record input will be the one whose key is next in the 
ASCII collating sequence. The value of the KEY last read 
will be assigned as the output o~ the KEY$ function. 

PAGE 8 - 28 





CAT .. NO. 

26-2204 

TM 





ERROR MESSAGES AND RETURNS 

Resident Error M11sage1 

OVERFLOW 

The system has exhausted its available memory space. 

If overflow occurs during an APPEND, then none of the new 
lines are appended. During the OLD, lines are included up to 
the point where overflow occurred. During RENUMBER, all 
lines are renumbered but references to line numbers are 
updated only up to the point where overflow occurred. 

SYNTAX 

Improper command, redundant information following command, 
or improperly formed number or name. 

PARAMETERS 

Improper parameters have been included in the RSBASIC 
initiation command line. 

PAGE A - 1 



Editor Error Messages 

AUTO 

Incorrect specification of the AUTO command. 

CHANGE 

Incorrect parameter specification in the CHANGE command. 

DUPLICATE 

Execution of the DUPLICATE command as specified would 
overwrite an existing program line. 

FILE FORMAT 

An attempt was made to load a file which was not an obJect 
file or was improperly formatted. May occur during a CHAIN 
or LOAD. 

LINE NUMBER 

Line number specification or line number range is incorrect. 

RENUMBER 

A renumber operation (RENUMBER or APPEND> has been re~uested 
which would generate a line number larger than 65535 or the 
increment is zero. 

SYNTAX 

Improper command, redundant information following command, 
or improper!~ formed number or name. 

PAGE A - 2 



Cqmpil1r Error M1ss1q1s 

Compiler error messages, when appropriate, will print a '$' 
character under the item in the line which prompted the 
error. Error messages will be printed under the line in 
which the error occurs. 

COMMON SIZE 

There exists a discrepancy in the COMMON SIZES between a 
main and subprogram. 

COUNT 

Inconsistant number of arguments in a subprogram or function 
cal 1. 

DOUBLE DEFINITION 

Variable or arra~ has already been declared in a SUB or DIM 
statement and may not be declared again. 

FILE FORMAT 

An input file is not in the expected format. 

FILE UNAVAILABLE -- TRSDOS ERROR XX 

The file specified for input or output cannot be accessed. 
XX= TRSDOS error number. 

LOGICAL EXPRESSION EXPECTED 

An invalid specification of a logical expression has been 
detected. 

NUMERIC OR STRING EXPRESSION EXPECTED 

A logical expression has been detected where a numeric or 
string expression was syntactically expected. For example, 

10 A=B OR C. 

PAGE A - 3 



OVERFLOW 

Scalar or Array offsets have exceeded &FFFF. 

ORDER 

SUB must be the first active statement of a subprogram. DEF, 
COM, REAL, INTEGER and STRING must precede executable 
statements: FOR must precede NEXT; SUB may be preceded only 
by END. Or, FOR loops may be nested but must not overlap. 

REFERENCE 

Programs may not CALL themselves. String valued functions or 
string expressions may not be used as arguments in function 
references or subroutine CALLS. Arrays may not appear in 
function references, expressions, assignments, or relations 
-- only subroutine CALLS. 

SIZE 

Specification of a size limit, dimension, 
exceeds allowable storage capacity. 

or value which 

SUBPROGRAM 

SUBEND may appear only at the end of a subprogram. 

SYNTAX 

Improperly 
Redundant 
misspelled 
Improperly 
constant. 

TYPE 

formed expression or incorrect punctuation. 
information at end of statement. Missing or 

keyword such as TO, THEN, GOSUB, or GOTO. 
formed name. Improperly formed string or numeric 

StTings and numbers may not be mixed in arithmetic 
expressions. The type of a variable does not agree with its 
use in the current context. 

UNCLOSED FOR LOOPS 

LINE NUMBER nnnn WITH INDEX VARIABLE name 

PAGE A - 4 



UNDEFINED 

A referenced function or variable has not been defined. 

WARNING: TYPE 

An invalid type has been specified in a function call. 
Corrective action has been taken. 

PAGE A - 5 



Runtime Error messages 

Runtime error messages are of the format: 

message text ERROR LINE 1##1. 

There are two types of Runtime errors: fatal and nonfatal. 
Fatal errors cause immediate cessation of execution; 
nonfatal errors resume processing after a message of the 
error has been displayed. 

The number in parenthesis is the error number returned by 
the ERR function. 

Fatal errors are: 

(01) END OF FILE 

Read attempt at end of file. 

(02) IO PARAMETER 

The parameters of an I/0 statement are not recognized. 

(03) COMPILATION 

The program contains a compilation error. 

(04).USING 

A PRINTUSING or INPUTUSING statement has attempted to print 
or input data using an Image which contains no format 
specifications. 

(05) INPUT SYNTAX 

Invalid type of data received on an INPUT statement. 

(06) BUFFER SIZE 

Record length ,or a file is less than zone size for standard 
format print. 

PAGE A - 6 



(07) OUT OF DATA 

An •ttempt w•• made to READ past the end of the DATA list. 

(08) READ DATA TYPE 

There is • type discrepancy between the variable data 
re~uested and that of the DATA list. 

(09) UNDEFINED REFERENCE 

A reference has been made to an unknown line number or 
external routine. 

(10) SUBSCRIPT 

A subscript is out of range. 

(11> ARGUMENTS 

The number, type, or value of arguments in an I/0 statement 
or subroutine call does not match the corresponding file 
record or subroutine parameter list. 

(12) RETURN 

A RETURN has been executed with no matching GOSUB. 

(13) OVERFLOW 

The stack memory has been exhausted due to excessive GOSUB 
and/or CALL nesting. 

(14) INVALID UNIT 

An invalid or undefined unit number has specified in an I/0 
statement. 

(15) UNIT NOT OPEN 

An I/0 statement refers to a unit which has not been opened. 

PAGE A - 7 



(16) UNIT OPEN 

Attempted OPEN of an already open unit. 

(17) FILE DCB SPACE EXHAUSTED 

An attempt has been made to open more units than can be 
accommodated at one time, due to either system or memory 
limitations. 

(18) INVALID FILESPEC 

A filespec has been invalidly specified. 

(19) KEY LENGTH 

A key length less than one or greater than 127 has been 
detected. 

(22) BINARY READ 

Input data does not match the READ list. 

(23) BINARY WRITE 

Output data does not fit in a record. 

(24) DELETED RECORD 

Attempted READ of a deleted binary record. 

(25) INVALID KEY 

The ISAM processor has detected an illegal key value. 

(26) KEY BOUNDARY 

The ISAM processor has detected an invalid key boundary 
within an existing ISAM file. 

(27> RECORD POINTER 

The ISAM processor has detected an invalid record pointer 
within an existing ISAM file. 

PAGE A - 8 



<28> INVALID 

The ISAM processor has detected an invalid index within an 
existing ISAM file. 

Nonfatal errors are: 

(30) INPUT SIZE 

A value greater than can be accomodated in the specified 
variable has been input. The data item is set to the maximum 
value and the specified sign is set to the maximum value and 
the specified sign. 

(31) OUTPUT SIZE 

Numeric value is too long for the Image specification. Field 
is filled with*· No message is printed unless the error is 
produced by ERROR statement. 

(32) NUMERIC OVERFLOW 

Overflow during expression evaluation. Sets value to maximum 
value with algebraically correct sign and continues. 

(33) NUMERIC UNDERFLOW 

Underflow during expression evaluation. The value is set to 
zero. Occurs only on decimal arithmetic. 

(34> DIVISION BY ZERO 

The value is set to the maximum for the type. 

(35) SOR 

Attempt to find the s~uare root of a negative number. The 
value returned is the s~uare root of the absolute value of 
the input number. 

PAGE A - 9 



(36) LOG 

Attempt to find the LOG of zero or a negative number. For 
zero the result is set to the maximum negative value. For a 
negative number the result is set to the LOG of the absolute 
value. 

(37) POWER 

A negative number is raised to a nonintegral power or zero 
raised to a negative power. Results are minus the power of 
the absolute value and maximum value, respectively. 

PAGE A - 10 



MODEL I/III COMPILER BASIC LIST AND SAMPLE PROGRAMS @ _____________ _ 

LIST and SAMPLE Programs 

The Compiler BASIC package contains two programs -- LIST and 
SAMPLE. They are in six disk files: 

LIST/BAS 
LIST/OBJ 
LIST/LST 

SAMPLE/BAS 
SAMPLE/OBJ 
SAMPLE/LS'r* 

LIST/BAS and SAMPLE/BAS are RSBASIC source files. LIST/OBJ and 
SAMPLE/OBJ are object files created with the COMPILE command. 
LIST/LST and SAMPLE/LST* are listing files created with the LIST, 
MAP, XREF, PRT='listing file' options of the COMPILE command. 
(The instructions'for using COMPILE are in Chapter 2 of this 
manual). 

*Note: The Model I package does not contain SAMPLE/LST. 

LIST Program 

The LIST program is for printing any listing files created with 
the PRT='listing file' option. To see how LIST works, you can 
print the LIST/LST file. Under TRSDOS READY (or DOS READY), type 
one of the following: 

RUNBASIC LIST/OBJ <ENTER> 
RSBASIC LIST/OBJ <ENTER> 

The Computer give you a FILE? prompt. Type: 

LIST/LST <ENTER> 

or any other listing file you want printed. The Computer will 
then print it on both your screen and line printer. 

NOTE: If you will not be using a line printer, you need to change 
the LIST program. To do this, first load RSBASIC. Then load the 
RSBASIC source file of LIST by typing: 

OLD LIST/BAS <ENTER> 

----------ltadaelhaeli----------
PAGE A - 11 



Change line 140 and save the altered program by typing: 

140 PRINT B$: GOTO 130 <ENTER> 
SAVE LIST/BAS <ENTER> 

Then make a new object file and listing file of the altered 
program by typing: 

COMPILE LIST/BAS, LIST/OBJ (LIST,MAP,XREF,PRT=LIST/LST)<ENTER> 

SAMPLE 

The SAMPLE program simply demonstrates how the Compiler works. 
You can run it using RUNBASIC or RSBASIC. Under TRSDOS READY (or 
DOS READY), type one of the following: 

RUNBASIC SAMPLE/OBJ <ENTER> 
RSBASIC SAMPLE/OBJ <ENTER> 

The Computer will ask you to input 20 characterse It will print 
them on the screen as you input theme Then it will print the 
numbers 1 through 100 followed by a series of X's. 

-----------bdaelhaeli-----------
PAGE A - 12 



MODEL I/III COMPILER BASIC OPERATORS & SPECIAL SIGNS 
-------------TRS-so@ ___________ _ 

COMPILER BASIC 
OPERATORS AND SPECIAL SIGNS 

For information on these operators and special signs, see 
Chapter 3, "BASIC Concepts". 

SPECIAL SIGNS 

E Power of 10 
& Hexadecimal constant 

Numeric 
+ 

* 
I 

** 
MOD 

String 
& 

Relational 
= 

>< or 
>= or 
<= or 

> 
< 

Logical 
AND 
OR 
NOT 
XOR 

<> 
=> 
=< 

OPERATORS 

Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 
Integer Division 
Modulus Arithmetic 

Concatenation 

Equals 
Not equal to 
Greater than 
Less than or 
Greater than 
Less than 

Logical AND 
Logical OR 
Logical NOT 
Logical XOR 

or Equal 
Equal 

TYPE DECLATATION TAGS 

$ String 
% Integer 
# Real 

---------- llad1elhaeli----------

PAGE A - 13 



MODEL I/III COMPILER BASIC COMMANDS AND KEYWORDS 

-----------TRS-so@ __________ _ 

WORD 

ABS 
AND 
APPEND 
ASC 
ATN 
AUTO 
BREAK 
CALL 
CHAIN 
CHANGE 
CHR$ 
CLEAR 
CLOSE 
COM 
COMPILE 
cos 
CRT 
CRTG 
CRTI$ 
CRTR 
CRTX 
CRTY 
CVD 
CVI 
DATA 
DATE$ 
DEF 
DELETE 
DELETE 
DIG 
DIM 
DISPLAY 
DUPLICATE 
END 
EOF 
ERR 
ERROR 
EXP 
EXPl0 
EXT 
FOR/NEXT 
GO 

COMPILER BASIC 
COMMANDS, STA'rEMENTS, AND FUNC'rIONS 

MEANING PAGE NO 

Compute absolute value (Function) 
Calculate logical AND (Function) 
Append two programs (Command) 
Get ASCII code (Function) 
Compute arctangent (Function) 
Number lines automatically (Command) 
Set or remove program breakpoints (Command) 
Execute external subroutine (Statement) 
Load and execute next program (Statement) 
Change program lines (Command) 
Get character ASCII or control code (Function) 
Clear all programs from memory (Command) 
Close disk file (Statement) 
Allocate common variable area (Statement) 
Compile BASIC program (Command) 
Compute cosine (Function) 
Position cursor (Function) 
Print in graphics mode (Function) 
Read video display (Function) 
Move cursor (Function) 
Find cursor position (Function) 
Find cursor position (Function) 
Convert Integer to Real (Function) 
Convert Real to Integer (Function) 
Store program-data (Statement) 
Get today's date (Function) 
Define function (Statement) 
Delete record from disk file (Statement) 
Erase program lines from memory (Command) 
Compute number of numeric characters (Function) 
Define string variables & arrays (Statement) 
Display variable contents (Command) 
Duplicate program statements (Command) 
Terminate program compilation (Statement) 
Notity if end of file (Function) 
Get error code (Function) 
Simulate error (Statement) 
Compute natural exponential (Function) 
Compute base 10 exponential (Function) 
Define address of external program (Statement) 
Establish program loop (Statement) 
Start or continue program execution (Command) 

6-12 
6-14 

2-5 
6-16 
6-18 

2-7 
2-9 

6-20 
6-24 
2-10 
6-25 
2-12 
6-27 
6-28 
2-13 
6-30 
6-32 
6-35 
6-39 
6-42 
6-44 
6-44 
6-46 
6-48 
6-50 
6-52 
6-54 
6-57 
2-17 
6-58 
6-60 
2-18 
2-19 
6-65 
6-67 
6-68 
6-69 
6-70 
6-71 
6-72 
6-73 
2-20 

----------ltadle 
PAGE A - 14 



MODEL I/III COMPILER BASIC COMMANDS AND KEYWORDS 

GOSUB 
GOTO 
HEX$ 
HVL 
IF ... .. 
THEN .. . 
ELSE 
INKEY$ 
INPUT 
INPUT 
from a 
disk file 
INPUT 
USING 
INPUT 
USING 
from a 
disk file 
INPUT$ 
INT 
INTEGER 
KILL 
KILL 
LEN 
LINE 
INPUT 
LINE 
INPUT 
from a 
disk file 
LIST 
LOAD 
LOG 
LOGl0 
LPRINT 
LPRINT 
USING 
MERGE 

NEW 
OLD 
ON 
BREAK 
GOTO 
ON 
ERROR 
GOTO 
ON ... 
GOSUB 

@ _____________ _ 

Go to specified subroutine (Statement) 
Go to specified line number (Statement) 
Compute hexadecimal value (Function) 
Convert hexadecimal string (Function) 
Test conditional expression (Statement) 

Get keyboard character if available (Function) 
Input data (Statement) 
Input data from disk file (Statement) 

Input formatted data (Statement) 

Input formatted data from a 
disk file (Statement) 

Input a character string (Function) 
Convert to integer value (Function) 
Define variables as integers (Statement) 
Delete file from disk (Command) 
Kill disk file (Statement) 
Get length of string (Function) 
Input a line of Data (Statement) 

Input line from a disk file (Statement) 

Display program lines (Command) 
Load compiled BASIC programs (Command) 
Compute natural logarithm (Function) 
Compute base 10 logarithm {Function) 
Print on line printer (Statement) 
Print using format on line printer (Statement) 

Merge disk program with resident 
program (Command) 
Erase BASIC program from memory (Command) 
Load BASIC source program (Command) 
Enable a <BREAK> handling routine (Statement) 

Set up error-trapping routine (Statement) 

Test and branch to subroutine (Statement) 

6-76 
6-78 
6-79 
6-81 
6-83 

6-86 
6-87 
6-92 

6-94 

6-99 

6-101 
6-103 
6-104 

2-21 
6-106 
6-107 
6-108 

6-110 

2-22 
2-24 

6-112 
6-113 
6-114 
6-116 

2-25 

2-27 
2-28 

6-118 

6-120 

6-122 

---------1tad1elhaell---------
PAGE A - 15 



MODEL I/III COMPILER BASIC COMMANDS AND KEYWORDS 

-------------TRs-ao@ ___________ _ 

ON .... 
GOTO 
OPEN 
OR 
POS 
PRINT 
PRINT 
to a 
disk file 
PRINT 
USING 
PRINT 
USING 
to a 
disk file 
RANDOMIZE 
READ 
READ 
from a 
disk file 
REAL 
REM 
RENUMBER 
RESET 
BREAK 
RESET 
ERROR 
RESET 
GOSUB 
RESTORE 
RESUME 
RETURN 
RND 
RUN 
SAVE 
SEG$ 
SGN 
SIN 
SIZE 
SQR 
STEP 
STOP 
STR$ 
STRING 
STRING$ 
SUB 
SUBEND 
SWAP 
SYSTEM 

Test and branch to different program 
line (Statement) 
Open disk file (Statement) 
Calculate logical OR (Function) 
Search for specified string (Function) 
Print on video display (Statement) 
Print to disk (Statement) 

Print using format (Statement) 

Print using format to disk file (Statement) 

Reseed random number generator (Statement) 
Get value from DATA Statement (Statement) 
Read contents of disk file (Statement) 

Define variables as real numbers (Statement) 
Comment line (remarks) (Statement) 
Renumber program (Command) 
Disable the <BREAK> handling 

routine (Statement) 
Disable error handling (Statement) 

Clear all returns (Statement) 

Reset data pointer (Statement) 
Terminate error trapping routine (Statement) 
Return control to calling program (Statement) 
Generate pseudorandom number (Function) 
Execute program (Command) 
Save BASIC source program on disk (Command) 
Get substring (Function) 
Get sign (Function) 
Compute sine (Function) 
Print used and unused memory (Command) 
Compute square root (Function) 
Execute portion of program (Command) 
Stop program execution (Statement) 
Convert to string representation (Function) 
Define variables as strings (Statement) 
Return string of characters (Function) 
Name and define subprogram (Statement) 
End subprogram (Statement) 
Exchange values of variables (Statement) 
Return to TRSDOS (Command) 

6-123 

6-125 
6-127 
6-129 
6-131 
6-135 

6-137 

6-142 

6-144 
6-146 
6-148 

6-150 
6-152 

2-29 
6-153 

6-154 

6-156 

6-158 
6-160 
6-162 
6-163 

2-30 
2-31 

6-165 
6-166 
6-168 

2-33 
6-170 

2-34 
6-172 
6-173 
6-176 
6-178 
6-179 
6-181 
6-182 

2-35 

-----------lladae~----------
PAGE A - 16 



MODEL I/III COMPILER BASIC COMMANDS AND KEYWORDS 

-----------TRS-so@ __________ _ 

SYSTEM 
TAB 
TAN 
TIME$ 
TRACE 
TRACE 
VAL 
WRITE 
to a 

Return to TRSDOS (Statement) 
Tab to position (Function) 
Compute tangent (Function) 
Get the time (Function) 

ON, Turn tracer on, off (Command) 
OFF 

Evaluate string (Function) 
Write to disk (Statement) 

disk file 
XOR Calculate exclusive OR (Function) 

6-184 
6-185 
6-186 
6-188 

2-36 

6-190 
6-192 

6-194 

----------1tad1elhaell----------
PAGE A - 17 



MODEL I/III COMPILER BASIC 

ABS ••••••••••• o •••• e ••••••• 

Addi ti on . . .. . .. . . . .. . .. .. . . .. .. .. .. .. 
AND 

Operator ....................... .. 
Function ..................... .. 

APPEND ....................... .. 
ASC oooooooooooooooooooooeeo 

Assembly Language 
Subprograms ............ 5-7, 

ATN ................................. . 
AUTO . . .. . . .. .. . .. ................ . 
BASIC 

Concepts ................. . 
Keywords ................. . 
Also see RSBASIC 

BED IT •••••••• o •••• 0 •••••••• 

Binary Input/Output 
0 ve rv i ew ..................... . 
In Sequential Access File 
In Direct Access File ..... . 
In Indexed Access File .. . 

BREAK O O O O O O O G G O O O O O G o O O O O O O 

BREAKPOINT .. . . . .. . . . .. . . .. . . . . . 
CALL o o o o o e e e o o O o o O O e O O O O O O 0 

CHAIN O O O O O o O O O o e o o o o o o e o o o o 

Chaining Programs ........... . 
CHANGE . . . . . . . . . . . . . . . . . . . . . 
CHR $ •••• o ••••• o •••••• o ••••• 

CLOSE ..................... . 
COM . . . . . . . . . " . . . . . . . . . . . . . . 
Concatenation ............. . 
cos O O O O O O O O O O O O O O O O O O O O O O O O 

CLEAR ............... o •••••• 

COMP I.LE ................... . 
Constants 

Definition .............. . 
Classifying ............. . 

Comp i 1 e r .. . . . . . . . .. . .. . . .. .. . .. . .. 
Compiling a Program ......... .. 
Commands ................ 2-1; 
CRT ...................•.... 
CR •rG • • • • • • • • • • • • • • • • o • • • • • • 

CRT!$ ..................... . 
CRTR ······················· CRTX ..................•.... 
CR TY ...................... . 
CVD ..•....•.......•..•..... 
CVI .........•.....•........ 
DATA 

0 0 0 0 0 G O O O O O O O O O O O O O O O O O 

6-12 
3-24 

3-31 
6-14 

2-5 
6-16 

8-21 
6-18 

2-7 

3-1 
6-1 

7-1 

4-13 
4-24 
4-34 
4-36 
2-9 
8-8 

6-20 
6-24 
5-13 
2-10 
6-25 
6-27 
6-28 
3-27 
6-30 
2-12 
2-13 

3-6 
3-12 

8-4 
1-12 
A-13 
6-32 
6-35 
6-39 
6-42 
6-44 
6-44 
6-46 
6-48 
6-50 

INDEX 

Data 
Conversion ................ . 
Operations .............. . 
Representing ............ .. 
Storage .................. .. 
Ways of Handling ......... .. 

Data Files 
Explanation ............... . 
Structure ................ . 

DATE$ • o •••••••••••••••••••• 

3-20 
3-22 

3-6 
3-10 
3-6 

4-1 
8-11 
6-52 

Debug .................... 8-5, 8-7 
Decimal Storage ............ 8-13 
DEF O • 0 •••••• G •••••••• 0 0 •• 0 • 6- 5 4 
DELETE 

Function ................. 2-17 
Statement .................. 6-57 

Demonstration Program ...... A-11 
DIG ••o••···•·····••o••····· 6-58 
DIM .... e ............... ., • 3-16 , 6-6 0 
Direct Access 

Overview .................. . 
Building the File ....... . 
Using Binary Input/Output 
Using Formatted I/O ...... . 
Using Stream Input/Output 

Diskettes 

4-6 
4-26 
4-34 
4-26 
4-32 

File Specification ....•.. 1-10 
Inserting (photo) ........ 1-2 
Loading Programs ............. 1-13 
Storing a Program ......... 1-11 
Using Diskettes .......... 1-9 
Write Protect Notch ...... 1-9 

DISPLAY .........•..... 2-18, 8-9 
Division ....................... 3-25 
DUMP . . . . . . . . . . . . . . . . . . . . . . . 8 - 9 
DUPLICATE ................... 2-19 
Editor .................. 7-1, 8-3 
END 
EOF .................•..•.•. 
ERR . . . . . . . . . . • . . . . . . • • . . . . . 
ERROR ....................•• 
Error Messages .........•... 
EXP O O O O O O O O O O O O O O O O O O O e O O O e 

EXP 10 •....•.•.••......••••. 
EXT ........•...•........... 
Exponents .................... . 
Exponentiation ............. . 
Expressions 

Definition ......•..••.... 
Syntax ff O o O O O o O O O O O O O O O O O O 

6-65 
6-67 
6-68 
6-69 

A-1 
6-70 
6-71 
6-72 
3-13 
3-26 

3-4 
3-35 

------------1tad1elhaeli-----------
PAGE A - 18 



MODEL I/III COMPILER BASIC 

Fielding Records .......... . 
File Specifications ....... . 
Fixed Length Records ...... . 
FOR/NEXT .................. . 
Formatted Input/Output 

4-10 
1-10 

4-3 
6-73 

Overview ................ . 4-12 
In a Direct Acces File ... 4-26 
In an Indexed Access File 4-36 
In Sequential Access File 4-22 

Full Development System 8-3 
Functions 

Definition .......... 3-4, 3-34 

List ····••o••············ A-13 
Summary . . . . . . . . . . . . . . . . . . 6-8 
Syntax ................... 3-37 

GO . . . . . . . . . . . . . . . . . . . . 2 - 2 0 , 8 - 9 
GOS U B •••••••••••••••••••••• 
GOTO ...................... . 
H EX $ O O O O G Cl O O O O O O O O O O O O O O O O 0 

Hexadecimal Numbers ....... . 
HVL •••• o •••••••• o •••••• o ••• 

IF ... THEN ... ELSE .......... . 
Indexed Access 

Overview ................ . 
Building the File ....... . 
Using Binary Input/Output 
Using Formatted I/O ..... . 
Using Stream Input/Output 

6-76 
6-78 
6-79 
3-12 
6-81 
6-83 

4-7 
4-36 
4-36 
4-36 
4-36 

INKEY$ ..................... 6-86 
INPUT • • • • • • • • • • • • • • • • • • • • • • 6-8 7 
INPUT from disk file 4-11, 6-92 
INPUT USING ................ 6-94 
INPUT USING from disk file 4-12, 

INPUT$ ................... . 
I NT . . . . . . . . . . . . ·--· ........ . 

] ,1 
INTEGER .......... :,1:-(.( ••.•.. 
Integer Division ............ . 
Integers 

Conversion ......... 3-20, 
Definition .................. . 
Storage .................. . 

Keywords .................. . 
KILL 

6-99 
6-101 
6-103 
6-104 

3-26 

3-21 
3-10 
8-12 

6-1 

Command .................. 2-21 
Statement ............... 6-106 

LEN • • • • • • • • • • • • • • • • • • • • • • • 6 -10 7 
LINE INPUT ................ 6-108 
LINE INPUT from a disk file 6-110 

INDEX 

LIST. • • • • • • • • • • • • • • • • • • • • • • • 2 - 2 2 
LOAD . . ...... e • • • • • • • • • • • • • • 2 - 2 4 
LOG .... o • • • • • • • • • • • • • • • • • • 6 -112 
LOG 10 .. . . . . . .. . . • . . . . .. . . . . . . 6 -113 
Logical Operators .......... 3-30 
Logical Tests .............. 3-5 
.LPRINrr .................... 6-114 
LPRINT USING ............... 6-116 
Memory Usage ............... 8-11 
MERGE . . . . . . . fl' • • • • • • • • • • • • • • 2 - 2 5 
Modulus Arithmetic .......... 3-26 
Multiplication ............. 3-25 
N EW • • • • • • • • • • • • • • • • • • • • • • • • 2 - 2 7 
NOT . . . . . . . . . . . . . . . . . . . . . . . . 3 - 31 
Numeric 

Arrays Storage ........... 8-14 
Data ....................... 3-10 
Relations ................ 3-29 

0 LD •••••••••••••• o •••••••• o 2 - 2 8 
ON BREAK GOTO ............. 6-118 
ON ERROR GOTO ............. 6-120 
ON ... GOSUB ....•........... 6-122 
ON ... GOTO ................... 6-123 
0 PEN ••••••••••••• o • • • • • • • • 6-12 5 
Operands ..................• 3-22 
Operators ................... 3-22 

List ..........•.......... A-12 
Logical .................... 3-30 
N ume r i c • • • • • • • • • • .. • • • • • .. • 3 - 2 3 
Relational ................ 3-28 
String ............•...... 3-27 

Test e••·················· 3-28 
OR 

Function ................ 6-127 
Operator .................. 3-31 

Parameter Passing .......... 8-21 
Parentheses ................. 3-32 
POS ....................... 6-129 
Precision ................... 3-10 
PRINT • o ••••••••••••••• o o •• 6-131 
PRINT to a disk file 4-11, 6-135 
PRINT USING ............... 6-137 , 
Program Definition ........... 3-3 
Programmers' Information .... 8-1 
RANDOMIZE ................. 6-·144 
R EAD • • • • • • • • • • • • • • • • • • • • • • 6 -14 6 
READ from disk file. 4-13; 6-148 
REAL ................ 3-16; 6-150 

----------1tad1e/haell----------
PAGE A - 19 



MODEL I/III COMPILER BASIC INDEX 

-----------TRs-so@ __________ _ 

Real Numbers 
Conversion ........ 3-20; 3-21 
Defintion ............... 3-10 

Records 
Definition ............... 4-2 
Fielding ...........•.... 4-10 
Input/Output Methods ... 4-10 
Types . . . .. . . . . . . . . . . . • . . . . 4 - 3 

Fixed Length .......... 4-3 
Variable Length ....... 4-3 

Ways of Access 
Direct . . . . . . . . . . . . . . . . 4-6 
Indexed ............... 4-7 
Sequential ............ 4-5 

Relational operators ....... 3-28 
Relational tests ............ 3-5 
REM ........................ 6-152 
RENUMBER . . . . . . . . . . . . . . . . . . . 2-29 
RESET BREAK O O O O O O CD O O O O O O e 0 

RESET ERROR .............. . 
RESET GOSUB .............. . 
RES 'rO.R E • • • • • • • • • •••••••••• 
RESUME • . • • . • • •••••••••.••• 
R ET URN • • • • • " • • • • . • • • • . • • • • 
R ND O ct O O O O O O O O O O O D O O Cl O O O O O 0 

RSBASIC 

6-153 
6-154 
6-156 
6-158 
6-160 
6-162 
6-163 

Loading ...................... 1-4 
Programming .............. 1-6 
Debugging .................. 1-8 
See also, BASIC 

R'UN . . . . . . . .. .. . . . . . . . .. . . . .. . .. . 2 - 3 0 
Runtime .................... 8-5; 8-7 
SAVE ............................... 2-31 
Saving a program ............... 1-11 
S EG$ .. . . . . .. . . . . .. . . .. . .. . . .. . . . 6-16 5 
Segmenting Programs ......... 5-1 
Sequential access 

Overview •................ 4-5 
Building the file ........ 4-15 
Using Binary I/O ........ 4-24 
Using Formatted I/O ..... 4-22 
Using Stream I/O ........ 4-15 

SGN ....................... 6-166 
SIN ........................ 6-168 
SIZE ....................... 2-33 
Special Signs .............. A-12 
S QR . . . . . . . . . . . . . . . . . • . . . . . 6 -170 
Stack usage ................ 8-20 

Statements 
Definition ................. 3-3 
List ................................ A-13 
Summary . . . . . . . . . . .. . . . . .. . .. 6-4 

STEP ............................... 2-34 
S TO p . . . . .. . . . . . . . . . . . . .. . . . . 6-172 
S rrR $ ..........•.... " . • . . . . 6 -176 
Stream Input/Output 

Overview ................. 4-11 
In Sequential Access File 4-15 
In Direct Acces File ... 4-32 
In Indexed Access File .. 4-36 

STRING .........•.... 3-14; 6-176 
String 

Array Storage ........... 8-18 
Concatenation ............ 3-27 
Data ................•... 3-11 
Relations ............•.. 3-29 
Storage ........... 3-14; 8-16 

STRING$ .....•............. 6-178 
SUB .......................... 6-179 
SUBEND ..................... 6-181 
Subprograms 

Calling Assembly 
Language Programs 5-7; 8-21 

How to Build ............. 5-2 
Passing Data ............. 5-5 
Storing .................. 5-7 

Subtraction ................ 3-24 
SWAP ...................... 6-182 
Syntax ....... · .......... 2-2; 6-2 
SYS'rEM 

Command ........... 2-35; 8-10 
Statement .......•...... 6-184 

TAB . . . . . . . . . . . . . . . . . . . . . . . 6-18 5 
TAN . . . . . . . . . . . . . .. . . . • . . . . . 6-18 6 
Test Operators ............• 3-28 
Test Relations ............... 3-5 
TIME$ . . . . . . . . . . . . • . . . . . . . . 6-18 8 
TRACE ON ................... 2-36 
TRACE OFF ....•............. 2-36 
Type Declaration Tag .. A-13; 3-17 
VAL . . . . . . . . . . • . . . . . • • . . . . • 6 -19 0 
variable Length Records ....• 4-3 
Variables 

Definition . • . . . . . . . . 3-7; 3-8 
Classification ...••....• 3-14 

WRITE to Disk File .. 4-13; 6-192 
Write Protect Notch .•...... 1-9 
XOR ..•...........•.. 3-31; 6-194 

----------1tad1elhaell----------
PAGE A - 20 






	workingset1.pdf
	_0606074207_001.pdf
	_0606074209_001.pdf
	_0606074212_001.pdf
	_0606074217_001.pdf
	_0606074223_001.pdf
	_0606074227_001.pdf
	_0606074250_001.pdf
	_0606074259_001.pdf
	working.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf

	set2.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf


	workingset1b.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf

	workingset2.pdf
	_0606074207_001.pdf
	_0606074209_001.pdf
	_0606074212_001.pdf
	_0606074217_001.pdf
	_0606074223_001.pdf
	_0606074227_001.pdf
	_0606074250_001.pdf
	_0606074259_001.pdf
	working.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf

	set2.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf


	workingset2b.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf

	workingset2c.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf

	workingset2d.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf




